SCOTT CHRISTIAN COLLEGE (AUTONOMOUS) NAGERCOIL

CURRICULUM AND SYLLABUS DEPARTMENT OF PHYSICS & RESEARCH CENTRE (Approved by the Standing Committee of the Academic Councils held on 21.10.2023 & 13.01.2024) POSTGRADUATE PROGRAMME CBCS-SEMESTER SYSTEM (For those who join from 2023 to 2026)

An evolution towards revolution ...

Education is crucial for attaining full human potential, developing an unbiased and evenhanded society and promoting national and global development. The education sector in India is witnessing a sweeping wave of change. The very first policy for education, *National Policy on Education* (NPE-1968) was promulgated in 1968, with the National Policy on Education (NPE- 1986) following in 1986. The National Policy on Education (NPE- 1992) and the Programme of Action 1992 (POA-1992) refined and implemented the NPE-1986. The National Education Policy 2020 (NEP 2020) is a landmark document and an evolution towards revolution in the Indian educational sector. It presents the vision for greater access, equity, excellence, inclusion, multiple entry and exit and affordability to help India emerge as the global knowledge superpower.

Providing access to quality education is the key to the curriculum and syllabus of Scott Christian College (Autonomous), in terms of social justice and equality, scientific advancement, cultural preservation and national and global integration. Students should have the freedom and flexibility in choosing their courses, skills, and capacities to become moral, successful, innovative, adaptable, and productive human beings.

Higher education plays an important role in promoting human as well as societal wellbeing and in contributing towards sustainable livelihoods and economic development. The present Outcome-Based Education (OBE) curriculum and syllabus, provides valuable insights and recommendations on aspects of education that include moving towards multidisciplinary and holistic education, mastery and high-order learning and promotion of quality research.

The current curriculum has been designed based on NEP 2020, the National Credit Framework (NCrF), the National Higher Education Qualifications Framework (NHEQF) and Curriculum and Credit Framework for Undergraduate Programmes (CCFUP) which envisage that students must develop into good, thoughtful, well-rounded, creative individuals with a standard of achievement. The themed curriculum aims to support teachers and students in developing their understanding of the curriculum design and delivery process as per the requirement of the world of work.

Dr.Sidney Shirly Dean of Arts Scott Christian College (Autonomous) Nagercoil

Smith

Dr. V. Robin Perinba Smith Dean of Science Scott Christian College (Autonomous) Nagercoil

Dr. B. Shamina Ross Dean of IT and Technical Education Scott Christian College

(Autonomous) Nagercoil

DEPARTMENT OF PHYSICS & RESEARCH CENTRE

Physics is one of the basic and fundamental sciences. The curriculum for the under graduate and post graduate Programmes in Physics is revised as per the UGC guidelines on Learning Outcome based Course Framework. The learnercentric courses let the student progressively develop a deeper understanding of various aspects of Physics.

The new curriculum offers courses in the core areas and it will train students with sound theoretical and experimental knowledge that suits the need of academics and industry. In addition to the theoretical course work, the students also learn physics laboratory methods for different branches of physics, specialized measurement techniques, analysis of observational data, including error estimation and etc. The students will have deeper understanding of laws of nature through the subjects like classical mechanics, quantum mechanics, statistical physics etc. The problem-solving ability of students will be enhanced. The students can apply principles in physics to real life problems. The restructured courses with well-defined objectives and learning outcomes provide guidance to prospective students in choosing the elective courses to broaden their skills not only in the field of physics but also in interdisciplinary areas. The elective modules of the framework offer students choice to gain knowledge and expertise in specialized domains of physics like astrophysics, medical physics, etc.

The learner centric courses are designed to enable the students to progressively develop a good understanding of the concepts of various domains in physics. Significant modification is the inclusion of the courses to equip students to face challenges in industries and make them employable. Skill development in different spheres and confidence building are given a special focus.

VISION:

- Reform, transform and empower the young minds by imparting quality education.
- Upbringing the overall personalities of the students by providing state of the art learning experience.
- Inculcate universal brotherliness and tolerance with highest standard of integrity

MISSION:

- Reaching out to the unreached by providing equal opportunity to learn irrespective of the caste and creed.
- Create social interaction, environmental sustainability, economic progress, and scientific awareness through varied curriculum.
- Provide transferable skills, life skills, e-skills and soft-skills through diverse learning experience.
- Promote experimental learning, field-trips and internships to foster entrepreneurship and self-reliance.
- Foster critical thinking and effective communication by advance teaching and learning process.

ELIGIBILITY:

For M.Sc. - Candidates must have completed a bachelor's degree in Physics or any related field from a recognised university with a minimum score of 50%.

DURATION OF THE PROGRAMME:

2 Years (IV Semesters) for M.Sc. Physics

MEDIUM:

English for both B.Sc. & M.Sc. Degree Programmes in Physics

FACULTY MEMBERS

Sl. No.	NAME	DESIGNATION
1.	Prof. A. CHARLES HEPZY ROY	Faculty Head i/c Associate Professor
2.	Dr. C. JAMES	Associate Professor
3.	Dr. C. BESKY JOB	Associate Professor
4.	Dr. Y. PREMILA RACHELIN	Associate Professor
5.	Dr. J.V. BYNAJA	Associate Professor
6.	Dr. V. ANSLIN FERBY	Associate Professor
7.	Dr. B.S. BENILA	Associate Professor
8.	Dr. Y. SHEEBA SHERLIN	Associate Professor
9.	Dr. T. R. BEENA	Assistant Professor
10.	Dr. S. SHARMILA JULIET	Assistant Professor
11.	Dr. D.J. JEEJAMOL	Assistant Professor
12.	Dr. H. ADLINE MAHIBA	Assistant Professor
13.	Dr. D. HUDSON OLIVER	Assistant Professor

MEMBERS OF THE BOARD OF STUDIES

SI. No.	NAME	ROLE	
1.	Prof. A. Charles Hepzy Roy	Faculty Head i/c Department of Physics & Research Centre Scott Christian College (Autonomous), Nagercoil. <u>charleshepzyroy@scottchristian.org</u> +91 9944261881	Chairman
2.	Dr. C. James	Associate Professor of Physics Department of Physics & Research Centre Scott Christian College (Autonomous) Nagercoil. james@scottchristian.org +919489500237	Member
3.	Dr. C. Besky Job	Associate Professor of Physics Department of Physics & Research Centre Scott Christian College (Autonomous) Nagercoil. <u>cbjob1969@gmail.com</u> +919487026024	Member
4.	Dr. Y. Premila Rachelin	Associate Professor of Physics Department of Physics & Research Centre Scott Christian College (Autonomous) Nagercoil. <u>premilarachelin@scottchristian.org</u> +919489620591	Member
5.	Dr. J.V. Bynaja	Associate Professor of Physics Department of Physics & Research Centre Scott Christian College (Autonomous) Nagercoil. <u>bynaja@scottchristian.org</u> +919443284135	Member
6.	Dr. V. Anslin Ferby	Associate Professor of Physics Department of Physics & Research Centre Scott Christian College (Autonomous) Nagercoil. <u>anslinferby@scottchristian.org</u> +919443595694	Member
7.	Dr. B.S. Benila	Associate Professor of Physics Department of Physics & Research Centre Scott Christian College (Autonomous) Nagercoil. <u>benila@scottchristian.org</u> +919843626563	Member
8.	Dr. Y. Sheeba Sherlin	Associate Professor of Physics Department of Physics & Research Centre Scott Christian College (Autonomous) Nagercoil. <u>sheebasherlin@scottchristian.org</u> +919442304397	Member
9.	Dr. T. R. Beena	Assistant Professor of Physics Department of Physics & Research Centre Scott Christian College (Autonomous) Nagercoil. <u>beena@scottchristian.org</u> +919487386199	Member

10.	Dr. S. Sharmila Juliet	Assistant Professor of Physics Department of Physics & Research Centre Scott Christian College (Autonomous) Nagercoil. <u>sharmilajuliet@scottchristian.org</u> +919487094860	Member
11.	Dr. D.J. Jeejamol	Assistant Professor of Physics Department of Physics & Research Centre Scott Christian College (Autonomous) Nagercoil. <u>jeejamol@scottchristian.org</u> +917598629087	Member
12.	Dr. H. Adline Mahiba	Assistant Professor of Physics Department of Physics & Research Centre Scott Christian College (Autonomous) Nagercoil. <u>adline@scottchristian.org</u> +919408657877	Member
13.	Dr. D. Hudson Oliver	Assistant Professor of Physics Department of Physics & Research Centre Scott Christian College (Autonomous) Nagercoil., +919952654515 hudsonoliver@scottchristian.org	Member
14.	Dr. C. Ravidhas	Faculty Head PG & Research Department of Physics Bishop Heber College (Autonomous) Thiruchirapalli – 620 017 <u>cravidhas@gmail.com</u> +919443076209	Subject Expert
15.	Dr. I. Hubert Joe	Associate Professor Department of Physics University of Kerala Thiruvananthapuram – 695 034 <u>hubertjoe@gmail.com</u> +919447220563	Subject Expert
16.	Dr. R. Sheela Christy	Professor and Head, Department of Physics & Research Centre, Nesamony Memorial Christian College, Marthandam - 629165 <u>sheelachristy64@yahoo.com</u> +91 9442382469	Vice- Chancellor's Nominee
17.	Mr. D. Gilbert Chandra	Group Head, Instrumentation, ISRO Propulsion Complex, Mahendragiri– 627 133 gilbertd26@gmail.com +919442180572	Representative
18.	Dr. V. Shally	Assistant Professor, Department of Physics & Research Centre, Holy Cross College (Autonomous), Kurusady, Nagercoil – 629 002., <u>shally.v@holycrossngl.edu.in</u> +917598854466	Post Graduate Meritorious Alumnus

The Scott Christian College (Autonomous) defines the focus reinforcing its academic Programmes and student life experience on campus through the Graduate Attributes (GA), that describe the knowledge, competencies, values and skills students imbibe for holistic development, multidisciplinary development and contribution to society. These attributes comprise characteristics that are transferable beyond the sphere of study into the national and international realm through curricular, co-curricular and extra-curricular engagements. They equip graduates for life long personal development and employment. Every Graduate of Scott Christian College (Autonomous) – (SCC) is desired to possess the following Graduate Attributes:

GA 1: Intellectual Competencies

Graduates of SCC

- have a comprehensive and incisive understanding of their domain of study as well as the ability for cross-disciplinary learning
- have the ability to apply the knowledge acquired through the curriculum as well as self-directed learning to a broad spectrum ranging from analytical thinking to synthesize new knowledge through research
- are able to have critical, independent and individual outlook regarding academic work and socially relevant issues

GA 2: Problem Solving

Graduates of SCC

- have the capacity to extrapolate from what has been learnt, translate concepts to real-life situations and apply acquired competencies in the required contexts to generate solutions to specific problems
- can view a problem or a situation from multiple perspectives and think 'out of the box' and generate solutions to complex problems in unfamiliar contexts
- are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to challenges

GA 3: Communication Skills

Graduates of SCC

- listen carefully, analyse texts and research papers, and present complex information in a clear and concise manner
- express thoughts and ideas effectively in writing and orally and communicate with others using appropriate media
- confidently express herself/himself and construct logical arguments using correct technical language related to a field of learning and area of professional practice

GA 4: Environmental Awareness

Graduates of SCC

- lessen the effects of environmental degradation, climate change, and pollution
- learn the nuances for cleanliness, conservation and wise use of resources so that it can be used for generations
- know the nuances of waste management, conservation of biological diversity, management of biological resources and biodiversity, and sustainable development and living

GA 5: Professional Ethics

Graduates of SCC

- develop principled and expert behaviour, and this will be showcased in their chosen careers and constructive roles as citizens of the world at large
- imbibe intellectual integrity and ethics in scholarly engagement and develop a spirit of inclusiveness through interactions with diverse people at all levels in life
- acquire new knowledge and skills, including 'learning how to learn' skills, for pursuing learning activities throughout life and adapting to

changing demands of the workplace through knowledge, skill development and reskilling, ethically

GA 6: Leadership Qualities

Graduates of SCC

- inculcate leadership qualities and attitudes, and team behaviour along autonomous lines through curricular, co-curricular and extracurricular activities
- develop managerial and entrepreneurial skills to create new opportunities for diverse careers and gear up to take up competitive examinations
- act together as a group or a team in the interests of a common cause and workefficiently as a member of a team

GA 7: Holistic Skill Development

Graduates of SCC

- develop critical thinking, problem-solving capacity, effective communication, and social skills
- are self-aware, flexible, resilient and have the capacity to accept and give constructive feedback and cope up with stress
- develop soft skills, e-skills and life skills to live, learn and work in the technically sound society globally and use appropriate digital methods for analysis of data

GA 8: Cross-Cultural Competencies

Graduates of SCC

- gain cross-cultural competencies through engaging with diverse linguistic, ethnic and religious communities and know how to understand, accept and appreciate individuals at local, national and international levels
- develop a global perspective through contemporary curriculum, culture, language and international exchange programmes
- acquire knowledge of the values and beliefs of multiple cultures and a global perspective to honour diversity, gender sensitivity and adopt

gender-neutral approach and show empathy to the less advantaged and the differently-abled

GA 9: Community Engagement

Graduates of SCC

- are sensitive to social concerns and have conviction toward social justice through active social engagement
- are endowed with a strong sense of environmental awareness through the curriculum and a friendly and serene campus eco-system.
- formulate an inspiring vision and build a team that can help achieve the vision, and motivate people to the right destination

GA 10: Value-Based Ethical Competency

Graduates of SCC

- are rooted in the principles of ethical responsibility and integrity permeated with Christian values leading to the building of character and constitutional values
- develop virtues such as truth, love, courage, unity, integrity, brotherhood, industry and uprightness
- practice responsible national and global citizenship required for responding to contemporary challenges, enabling learners to become aware of and understand global issues and to become active promoters of more peaceful, tolerant, inclusive, secure, and sustainable societies

Learning Outcomes Descriptors for a Qualification at Level 6.5 on the NHEQF

The Master's degree is awarded to students who have demonstrated the achievement of the outcomes located at level 6.5 on the NHEQF.

ELEMENT OF THE DESCRIPTOR	NHEQF LEVEL DESCRIPTORS										
	The graduates should be able to demonstrate the acquisition of:										
Knowledge and	• advanced knowledge about a specialized field of enquiry with a critical understanding of the emerging developments and issues relating to one or more fields of learning										
Understanding	principles, methods, and techniques applicable to the chosen field of learning or professional practice,										
	 procedural knowledge required for performing and accomplishing complex, specialized and professional tasks 										
	accomptioning comption, operatinged and proteosional asso										

	relating to teaching, and research and development.
General, Technical and Professional Skills	 The graduates should be able to demonstrate the acquisition of: advanced cognitive and technical skills required for performing and accomplishing complex tasks related to the chosen fields of learning. advanced cognitive and technical skills required for evaluating research findings and designing and conducting relevant research that contributes to the generation of new knowledge. specialized cognitive and technical skills relating to a body of knowledge and practice to analyse and synthesize complex information and problems.
Application of Knowledge and Skills	 The graduates should be able to demonstrate the ability to: apply the acquired advanced theoretical and/or technical knowledge about a specialized field of enquiry or professional practice and a range of cognitive and practical skills to identify and analyse problems and issues associated with the chosen fields of learning. apply advanced knowledge relating to research methods to carry out research and investigations and to formulate evidence-based solutions to complex and unpredictable problems.
Generic Learning Outcomes	 develop appropriate tools for data collection for research The graduates should be able to demonstrate the ability to: communicate in a well-structured manner, technical information and explanations, and the findings/results of the research studies undertaken in the chosen field of study, evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyse and synthesize data from a variety of sources; draw valid conclusions and support them with evidence and examples, and address opposing viewpoints pursue self-paced and self-directed learning to upgrade knowledge and skills, including research-related skills, required to pursue a higher level of education and research.
Constitutional, Humanistic, Ethical, and Moral Values	 The graduates should be able to demonstrate the willingness and ability to: embrace and practice constitutional, humanistic, ethical, and moral values in one's life and in the field of study and professional practice, participate in actions to address environmental protection and sustainable development issues, follow ethical principles and practices in all aspects of research and development, including inducements for enrolling participants and avoid unethical practices

	The graduates should be able to demonstrate the acquisition of knowledge and skill sets required for:
Employability and	• adapting to the future of work and responding to the demands of the fast pace of technological developments and innovations that drive the shift in employers' demands for skills
Entrepreneurship Skills	• transition towards more technology-assisted work involving the creation of new forms of work and rapidly changing work and production processes.
	• exercising full personal responsibility for the output of own work as well as for group outputs and for managing work that is complex and unpredictable requiring new strategic approaches.
Credit Requirements	• The 2-year/4-semester Master's programme builds on a 3- year/6-semester bachelor's degree and requires a total of a minimum of 80 credits from the first and second years of the programme, with a minimum of 40 credits in the first year and minimum of 40 credits in the second year of the programme at level 6.5 on the NHEQF.
Entry Requirements	• A 3-year Bachelor's degree for the 2-year/4-semester Master's degree programme (e.g. M.A., M.Com., M.Sc., etc.).

PLO & GA Mapping for M.Sc. Physics

PROGRAMME LEARNING OBJECTIVE #	PROGRAMME LEARNING OBJECTIVE (PLO)	DESCRIPTION OF PLO	PLO MAPPED WITH GA#
PLO 1		Recognize and reflect on the production of knowledge in multiple spaces	GA 1 GA 8
	Learning Dispositions	Develop the leadership capacity to negotiate intercultural learning spaces	GA 1 GA 6 GA 8
		Engage dialogically with distinct and/or intersecting intellectual communities to develop the scope of inquiry	GA 2 GA 3
		Develop intensive and extensive knowledge and expertise in their respective domains	GA 1
PLO 2	Domain specific knowledge	Formulate and extrapolate the knowledge gained to be applied in real– life situations, for self-directed learning and in competitive examinations	GA 1 GA 2 GA 3
		Evaluate and create domain specific	GA 1

		knowledge in areas of learning,	GA 2
		research and industry	
		Translate theoretical understanding to	
		experimental knowledge for solving	GA 1
	Application	complex problems	GA 3
	Application	Ability to solve problems using	
	oriented	pragmatic, alternative and creative	GA 1
PLO 3	knowledge and	approaches	GA 2 GA 3
	diverse		GA 5
	perspectives	Capacity to apply advanced knowledge	
		and approaches to solve concrete and	GA 1
		abstract problems in domain-related	GA 2
		and multi-disciplinary issues.	
		Develop aptitude for innovation and	GA 6
		entrepreneurship	
		Identify contemporary research	GA 1
PLO 4	Innovation and	problems, analyse data qualitatively	GA 2
1201	research	solutions	GA 9
		Create new ideas, analyse problems,	CA 6
		diagnose them and identify their	
		causes independently and/or in groups	GA /
		Document, prepare and present	.
		research work as reports and articles	GA 6
	Scientific	in academic forums	
PLO 5	communication	critically assess, review and present	GA 1
	ckille	Take technically complex scientific	
	SKIIIS	topics and craft them into accessible,	GA 1
		informative, and compelling content	GA 2
		for specific audiences	
		Use domain-related advanced software	CA 2
		resources, computational skills and	
		digital tools for data analysis and	GA 5
	Digital	Ethically apply digital skills to	
PLO 6	competency	creatively communicate ideas and	GA 5
	competency	issues related to academic experiences	GA 10
		Acquire the ability to leverage digital	
		technologies to communicate,	GA 5
		collaborate, and analyse data	
DI O 7	Ethical	Apply domain specific ethical	GA 1
PLO 7	Ethical reasoning	principles and practices in academic,	GA 5
		professional and social engagements	

		Transform the behaviour of students to	GA 4
		preserve public interest, the environment and be a source of help	GA 5
		Being honest and taking responsibility	GA 4
		for academic work and environmental sustainability	GA 5
		Develop an interdisciplinary approach	GA 1
		to research	GA 7
	Comparative and	Compare scientific, social and	GA 1
PLO 8	interdisciplinary	historical phenomena in order to yield new insights	GA 9
	knowledge	Articulate how the complexities of	GA 3
	practices	social differentiation, like sex, gender,	GA 5
		disability, race, ethnicity, nation, class,	
		and such give insights and shape	GA ð
		intellectual projects	GA 9
		Choose from diverse career options available in local, national and international realms.	GA 8
PLO 9	Career readiness	Find success in workplace, manage one's career and apply the skills learned	GA 7
		Carry out further research or pursue higher education in the country or abroad	GA 1
		Cultivate relationship with mentors	CA 3
		and advisors, whose expertise and	
	Creating	experience can assist in the	GA 7
	collaboration with	development of work	
PLO 10	the corporate	Accognize and reflect on the value,	GA 5
	world	collaboration in different settings and	GA 9
		situations	0.1 2
		Produce new knowledge by working at	
		the intersection of multiple disciplines	GA 1
		and interdisciplinary fields	

METHODS OF EVALUATION

Evaluation	Evaluation Methods					
	Continuous Internal Assessment Test					
Internal	Assignments / Snap Test / Quiz	40				
	Seminars					
External	End Semester Examination	60				
	100					

M.Sc. Physics CURRICULUM TABLE

							Hours								
Year	Semester	Module No.	Courses	Course Code	Lecture	Tutorial	Practical	Internship	Self-Learning	Demonstration	Research Project	Total Hours	Credits	Credit Points	
		1.1	Core Course 1 - Mathematical Physics – I	23PP11	6							6	4	24	
		1.2	Core Course 2- Classical Mechanics	23PP12	6							6	4	24	
I	I	1.3	Core Course 3 - Practical I- Electronics & Advanced Physics – I	23PPP1			6					6	4	24	
		1.4	Discipline Specific Elective 1- Energy Physics	23PPEA	6							6	4	24	
		1.5	Discipline Specific Elective 2- Linear Integrated Circuits	23PPEC	6							6	4	24	
		1.6	Project									0	2	12	
			Т	ota		r						30	22	132	
		2.1	Core Course 4 - Solid State Physics – I	23PP21	6							6	4	24	
I	II	2.2	Core Course 5 - Mathematical Physics – II	23PP22	6							6	4	24	
		2.3	Core Course 6 - Practical II - Electronics & Advanced Physics 2	23PPP2			6					6	4	24	

	1	1		1	í .	1	1			1				1	
		2.4	Discipline Specific Elective 3- Arduino Programming Theory	23PPEB	6							6	4	24	
		2.5	Discipline Specific Elective 4- MATERIAL SCIENCE / MEDICINAL CHEMISTRY	23PPW1	6							6	4	24	
		2.6	Project									0	2	12	
				Fota	l	1				1	1	30	22	132	
		3.1	Core Course 7 - Quantum Mechanics	23PP31	6							6	4	26	
	111	3.2	Core Course 8 - Electro Magnetic Theory	23PP32	6							6	4	26	
		3.3	Core Course 9 - Molecular Spectroscopy	23PP33	5							5	4	26	
II		3.4	Discipline Specific Elective 5- Practical – III Arduino Programming	23PPP3			6					6	4	26	
				3.5	Discipline Specific Elective 6- Electronic Devices & Circuits / Material Science	23PPP3	5							5	4
		3.6	Project									2	2	13	
		3.7	Internship									0	4	26	
				Fota	l							30	26	169	
		4.1	Core Course 10 - Solid State Physics – II	23PP41	6							6	4	26	
11		4.2	Core Course 11- Statistics 8 Thermodynamics	23PP42	6							6	4	26	
	1	I			1	1	I	L	1		I			l	

	4.3	Cor Par	e Course 12- Nuclear & ticle Physics	23PP43	6				6	4	26
	4.4	Dis 7- T Me	cipline Specific Elective 'heory - Numerical thods & MATLab	23PPEE	6				6	4	26
	4.5	Dis 8- 1 Me	cipline Specific Elective Practical – IV Numerical thods & MATLab	23PPP4		6			6	4	26
			Т	otal					30	20	130
	Total Credits for the PG Physics Programme					90	563				

CREDIT LEVEL – 6

I SEMESTER

		PAPER TITLE	CREDITS	CREDIT POINTS	Hrs		
	Core Course – 1 CC - 1	Mathematical Physics - I	4	24	6		
	Core Course – 2 CC – 2	Classical Mechanics	4	24	6		
Part	Core Course – 3 CC – 3	Practical – I Electronics & Advanced Physics - I	4	24	6		
	Discipline Specific Elective/Generic- 1 DSE - 1	Energy Physics	4	24	6		
	Discipline Specific Elective/Generic –2 DSE – 2	Digital Integrated Electronics	4	24	6		
		Total	20	120	30		
	Project	Project	2	12	0		
	Internship						
Т	otal Credits for the P	22	132	30			
	II CEMECTED						

II SEMESTER

		PAPER TITLE	CREDITS	CREDIT POINTS	Hrs
Part	Core Course – 4	Solid State Physics - I	1	24	6
Ι	CC – 4	Solid State Fllysics - I	4	24	U

Core Course – 5 CC – 5	Mathematical Physics - II	4	24	6
Core Course – 6 CC – 6	Practical – II Electronics & Advanced Physics 2	4	24	6
Discipline Specific Elective/Generic- 3 DSE - 3	Arduino Programming Theory	4	24	6
Discipline Specific Elective/Generic – 4 DSE – 4	CHEMISTRY/PHYSICS Medicinal Chemistry/ Material Science	4	24	6
	Total	20	120	30
Project	Project	2	12	0
Internship				
Total Credits for the PG P	22	132	30	

CREDIT LEVEL - 6.5

III SEMESTER

		PAPER TITLE	CREDITS	CREDIT POINTS	Hrs
	Core Course – 7 CC – 7	Quantum Mechanics	4	26	6
Part I	Core Course – 8 CC – 8	Electro Magnetic Theory	4	26	6
	Core Course – 9 CC – 9	Molecular Spectroscopy	4	26	5
	Discipline Specific Elective/Generic - 5 DSE - 5	Practical – III Arduino Programming	4	26	6
	Discipline Specific Elective/Generic - 6 DSE - 6	Electronic Devices & Circuits / Material Science	4	26	5
	Total			130	28
	Project	Project	2	14	2
	Internship I - 1		4	26	0
To	tal Credits for the l	PG Physics Programme	26	170	30

IV SEMESTER

		PAPER TITLE	CREDITS	CREDIT POINTS	Hrs
Part	Core Course – 10	Solid State	4	26	6

Ι	CC - 10	Physics - II			
	Core Course – 11	Statistics &	4	26	6
	CC - 11	Thermodynamics	Т	20	U
	Core Course – 12	Nuclear &	1	26	6
	CC - 12	Particle Physics	4	20	U
	Discipline Specific	Theory -			
	Elective/Generic -	Numerical	1	26	6
	7	Methods &	4		U
	DSE – 7	MATLab			
	Discipline Specific	Practical – IV		26	
	Elective/Generic -	Numerical			6
	8	Methods &	4	20	0
	DSE – 8	MATLab			
	Project				
	Internship				
Total	Total Credits for the PG Physics Programme			130	30

SEMESTER I

Course Title: N	IATHEMATIC	CAL PHYSICS – I	Course Type: Theory			
			Course Code: 23PP11			
Total Hours: 90		Hours/Week: 6	Credits: 4			
Pass-Out Policy :	:					
Minimum Contact Hours: 54						
Total Score %: 1	00	Internal: 40 H	External: 60			
Minimum Pass %	%: 50 [No I	Minimum for Internal]				
Course Creator	<u>.</u>	Expert 1:	Expert 2:			
Prof. A. Charles	Hepzy Roy	Dr. B.S. Benila	Dr. T.R. Beena			
Asso. Prof., Faculty Head		Asso. Prof. of Physics	Assi. Prof. of Physics			
+919944261881		+919843626563	9487386199			
achroy66@gmai	l.com	benjanebenila@gmail.com	trbeena@gmail.com			

CLO- No.	Expected Course Learning Outcome Upon completion of this course, the students will be able to:	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	Cognitive Level CL	Knowledge Catogory KC
CLO- 1	Explain linear dependence and linear combination of vectors as quantities in physics and identify various types of matrices and explain how one type of matrix differs from another. Recount functions like Alpha, Beta, Gamma and Green function	1[10] 6[10]	1,2,3,5 ,6,8,10	U, Ap, An, E	C, P
CLO- 2	Understand the differentiation and integration of vector fields through vector calculus	1[10] 6[10]	1,2,3,5 ,6,8,10	R, Ap, An, E	F, P

CLO- 3	Solve partial differential equations of second order that are common in physical sciences by making use of standard methods like separation of variables	1[10] 6[10]	1,2,3,5 ,6,8,10	U, An, Ap, C	Р, М
CLO- 4	Identify second order linear differential equation and find the linear independent solutions. Elaborate the orthogonal polynomials and other special functions	1[10] 6[10]	1,2,3,5 ,6,8,10	U, Ap, An, C	F, M
CLO- 5	Master the basic elements of complex mathematical analysis, including the integral theorems, obtain the residues of a complex function and use the residue theorem to evaluate definite integrals in solving physical problems	1[10] 6[10]	1,2,3,5 ,6,8,10	U, Ap, An	Р, М

Module	Course Description	Hours	% CLO Mapping with Module	Learning Activitie	Assessment Tasks	Reference
Ι	VECTOR ALGEBRA, MATRICES &	α В,Γ,	GREEN	S FUNC	TIONS	
1.1	Vector spaces – basis	1	1[10]	Lec	MCQ, Ess	1,4
1.2	Linearly dependent and independent set of vectors	1	1[10]	Lec	Ess	1,4
1.3	Schmitt's orthogonalization process	1	1[5]	Lec	SA	1,4
1.4	Rank of a matrix	1	1[10]	GD	Pro	1,4
1.5	Inverse of a matrix		1[5]	Lec	Pro	1,4
1.6	Caley Hamilton's theorem	1	1[10]	Lec	Ess	1,4
1.7	Eigenvalues and Eigenvectors	1	1[5]	Lec	SA	1,4
1.8	Diagonalisation of matrices	1	1[5]	GD	Pro	1,4
1.9	Beta and Gamma Functions	1	1[5]	Lec	SA	1,4
1.10	Evaluation of Beta Function	1	1[10]	TPS	SA	1,4
1.11	Transformation of Beta and Gamma functions	1	1[10]	GD	Sem	1,4
1.12	Relation between Beta and Gamma function	1	1[5]	Lec	Sem	1,4
1.13	Greens function– Solution to problems	1	1[10]	Lec	Ess	1,4
II	VECTOR CALCULUS					
2.1	Gradient of a scalar field	1	2[10]	Lec	MCQ, Ess	1,4
2.2	Line, surface and volume integrals	1	2[10]	GD	SA	1,4

2.3	Divergence of a vector function	1	2[10]	Lec	Ess	1,4
2.4	Curl of a vector function and its	1	2[5]	Lec	Ess	1,4
	physical significance					
2.5	Gauss divergence theorem	1	2[10]	Lec	SA	1,4
2.6	Gauss's law in differential form	1	2[10]	Lec	SA	1,4
2.7	Deduction from Gauss divergence	1	2[10]	Lec	Pro	1,4
	theorem					
2.8	Stoke's theorem	1	2[10]	Lec	Pro	1,4
2.9	Deductions from Stoke's theorem	1	2[5]	GD	Lec	1,4
2.10	Green's theorem	1	2[5]	Sem	Ess	1,4
2.11	Green's theorem in a plane	1	2[10]	Sem	SA	1,4
2.12	Orthogonal curvilinear coordinates	1	2[5]	Lec	Ess	1,4
III	PARTIAL DIFFERENTIAL EQUA	TION	1			
3.1	The equation of heat conduction	1	3[10]	Lec	MCQ,	1
					Ess	
3.2	Variable linear flow	1	3[5]	Lec	Ess	1
3.3	Electrical analogy of linear heat		3[5]	Lec	SA	1,2
	flow:					
3.4	Two dimensional heat conduction	1	3[10]	GD	Ess	1
3.5	Temperature in an infinite bar	1	3[10]	Lec	Qui,	1
					Ess	
3.6	Temperature inside a circular	1	3[10]	Lec	Ess	1
	plate					
3.7	The wave equation		3[10]	Lec	SA	1,2
3.8	The transverse vibration of	1	3[5]	GD	MCQ	1
	stretched string					
3.9	Harmonic waves	1	3[5]	Sem	SA	1
3.10	D'Alembert's solution	1	3[5]	Sem	SA	1
3.11	Waves on strings	1	3[5]	Sem	MCQ	1
3.12	The vibration of a rectangular	1	3[10]	Lec	Ess	1
	membrane					
3.13	The vibration of a circular	1	3[10]	Lec	Ess	1
	membrane					
IV	SPECIAL FUNCTIONS	·I				
4.1	linear differential equation of	F	4[10]	Lec	MCQ,	1
	second order				Ess	
4.2	Linear independence of solution	1	4[10]	GD	SA	1
4.3	Series solution of linear oscillator	· 1	4[5]	Lec	Pro	1,2
	equation-Frobenius method					
4.4	Legendre differential equation -	· 1	4[10]	GD	Ess	1
	solution					
4.5	Generating function	1	4[10]	Lec	Qui,	1
					Ess	
4.6	Rodigue formula	1	4[5]	Lec	Ess	1
4.7	Orthogonal property	1	4[10]	Lec	Pro	1,2
4.8	Recurrence formula	1	4[10]	GD	MCQ,	1
		_			Pro	
4.9	Hermite differential equation	1	4[10]	Sem	Ess	1

4.10	Generating function	1	4[5]	Lec	Ess	1
4.11	Rodigues formula	1	4[5]	Lec	Ess	1
4.12	Recurrence formula	1	4[5]	Lec	Ess	1
4.13	Orthogonal property	1	4[5]	Lec	Ess	1
V	COMPLEX VARIABLE		1		1	1
5.1	Function of Complex Variable		5[10]	TPS	SA	1
5.2	Cauchy Riemann Condition	1	5[5]	Lec	Ess	3
5.3	Cauchy's Integral Theorem and	1	5[5]	Lec	Ess,	3
	Integral Formula				Qui	
5.4	Taylor's Series	1	5[5]	CS	Ess	3
5.5	Laurent's Series	1	5[5]	CS	Ess	3
5.6	Singularities of an Analytic Function	1	5[5]	Lec	SA	3
5.7	Cauchy's Residue Theorem		5[5]	Lec	Ess	3
5.8	Evaluation of Residues	1	5[5]	CL	Pro,	3
					MCQ	
5.9	Evaluation of Definite Integrals:	1	5[10]	CL	Ess,	3
	Integration Around Unit Circle				Pro	
5.10	Evaluation of Certain Integrals	1	5[5]	CL	Pro	3
	Between $+\alpha$ and $-\alpha$					
5.11	Jordan's Lemma	1	5[5]	Lec	SA	3
5.12	Intending the Contour	1	5[10]	Lec	SA	3
5.13	Integrals Involving Multiple Valued	1	5[5]	GD	Ess	3
	Function (Branch Points)					
5.14	Problems related to complex	1	5[10]	GD	Pro	3
	variables, Cauchy's Residue					
	Theorem and Integration					
	· · · · · · · · · · · · · · · · · · ·					

BOOKS FOR REFERENCE:

- 1. Satyaprakash, Mathematical Physics, S. Chand, Co., New Delhi, 1994.
- 2. L.A. Pipes and L.R. Harvill, Applied Mathematics for Engineers and Physicists, McGraw Hill Co., 1970.
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley Eastern Ltd., 1989.
- 4. Eugene Budkov, Mathematical Physics, Addision Wesley Publishing Co., 1973
- 5. George B. Arfkan & Hans J. Weber, Mathematical Methods for Physicists, Harcourt (India) Pvt., Ltd., 2007.

Course Title: CLASSICAI	MECHANICS	Course Type: Theory
		Course Code: 23PP12
Total Hours: 90	Hours/Week: 6	Credits: 4
Pass-Out Policy :		
Minimum Contact Hours: S	54	

Total Score %: 100	Internal: 40	External: 60
Minimum Pass %: 50	[No Minimum for Interna	al]
<u>Course Creator:</u>	Expert 1:	Expert 2:
Prof. A. Charles Hepzy	Dr. I.V. Dunaia	Dr. V. Shaaha, Sharlin
Roy	DI. J.V. Dynaja	DI. I. Sheeba Sherini
Asso. Prof., Faculty Head	Asso. Prof. of Physics	Asso. Prof. of Physics
+919944261881	+919444384135	+919442304397
achroy66@gmail.com	bynaja@gmail.com	ysheebamohan@ gmail.com

CLO No.	Expected Course Learning Outcome Upon completion of this course, the students will be able to:	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	Cognitive Level CL	Knowled ge Catogory KC
CLO- 1	Gain deeper understanding of classical mechanics. Consolidate the understanding of fundamental concepts in mechanics such as force, energy, momentum etc.	2[10] 5[10]	1,2,3,6	U Ap	C, F
CLO- 2	Evaluate the equations of motion for complicated mechanical systems using the Lagrangian and Hamiltonian formulation of classical mechanics.	2[10] 5[10]	1,2,3,6	U Ap An	F, P
CLO- 3	Solve the Newton equations for simple configurations using various methods	2[10] 5[10]	1,2,3,6	Ap E	С, Р
CLO- 4	Understand the foundations of Non- linear dynamics, Chaotic motion, etc.	2[10] 5[10]	1,2,3,6	An E	Р
CLO- 5	Learn and apply mathematical techniques and methods of use to physicists in solving problems.	2[10] 5[10]	1,2,3,6	U Ap	Р, М

Module	Course Description	Hours	% CLO Mapping with Module	Learning Activitie	Assessment Tasks	Reference
Ι	LAGRANGIAN FORMUI	ATIC	N			
1.1	Mechanics of a single particle	1	1[10]	Lec	SA	1
1.2	Mechanics of a system of particles	1	1[5]	GD	Ess	1
1.3	Constraints: Define and Classification holonomic, non-holonomic, rheonomic, scleronomic	2	1[10]	Lec	Ess	1
1.4	Generalised coordinates – definition and explanation	0.5	1[10]	Lec	Ess	1
1.5	Principle of virtual work - statement	0.5	1[10]	Lec	Ess	1

	and proof					
1.6	D'Alembert's principle – statement and	0.5	1[10]	00	C A	1
	proof	0.5	1[10]	00	SA	
1.7	Lagranges equation using D'Alembert's		4500	Ŧ		1
	principle:		1[5]	Lec	SA	
1.8	Conservative system	0.5	1[10]	Lec	SA	1
1.9	non-conservative system	0.5	1[10]	Lec	SA	1
1.1	Application 1: Single particle in space	0.5	1[10]	Lec	Pro	1
0			1[10]			
1.1 1	Cartesian coordinates	1	1[5]	GD	Lec	1
1.1	Plane polar coordinates	1	1[5]	Sem	Ess	1
1.1	Application 2: Atwoods machine	0.5	4 []	Sem	SA	1
3			1[5]			
1.1	Application 3: Bead sliding on a	0.5		Lec	Ess	1
4	uniformly rotating wire in a force free		1[5]			
	space					
II	HAMILTONIAN FO	<u>DRMU</u>	LATIO	N	1499	-
2.1	Hamilton's principle – statement and explanation	0.5	2[10]	Lec	MCQ, Ess	2
2.2	Derivation of Lagrange's equation form	1	2[5]	GD	SA	2
23	Hamilton's equations of motion	1	2[10]	Lec	Fss	2
2.4	Applications of Hamiltonian formulation	1	2[5]	Lec	Ess	2
2.5	Simple pendulum with moving support	0.5	2[10]	Lec	SA	2
2.6	Charged particle in an electromagnetic	0.5	2[10]	Lec	SA	2
2.7	Canonical transformation equations	1	2[5]	Lec	Pro	2
2.8	Application – solving simple harmonic	1	2[10]	Lec	Pro	2
2.0	oscillator problem using canonical		2[10]	Цес	110	-
	transformation					
2.9	Hamilton Jacobi theory	1	2[5]	GD	Lec	2
2.1	Application – solving simple harmonic	1	2[5]	Sem	Ess	2
0	oscillator problem by Hamilton Jacobi					
0.1	theory		0.54.03	-		0
2.1	Poisson's bracket		2[10]	Sem	SA	2
1 21	Properties of Poisson brackets	05	2[[]	Loc	Fcc	2
2.1	1 10per lies of roissoil brackets	0.5	2[3]	цес	E22	2
2.1	Fundamental Poisson brackets	1	2[5]	Lec	SA	2
3		-	-[~]			_
2.1	Lagrange's bracket – relation between	1	2[5]	Lec	Pro	2
4	Lagrange and Poisson brackets					
III	MOTION OF A PARTICLE IN A CE	NTR/	AL FOR	CE FIE	LD	
3.1	Motion of a particle in a central force –	1	3[10]	Lec	MCQ,	2
	bounded and unbounded motion with				Ess	

	examples						
3.2	Equivalent one body problem – reduced	1	3[5]	Lec	Ess	2	
	mass						
3.3	Motion in a central force field	1	3[5]	Lec	SA	2	
3.4	Component of L along any axis through	1	3[10]	GD	Ess	2	
	the centre of force is constant						
3.5	Areal velocity is constant	0.5	3[5]	Lec	Ess	2	
3.6	Total energy E is constant of motion	1	3[5]	Lec	Ess	2	
3.7	General features of motion	1	3[10]	Lec	SA	2	
3.8	Equivalent one dimensional problem	1	3[5]	GD	MCQ	2	
3.9	Motion in an arbitrary potential field	1	3[5]	Sem	SA	2	
3.1	Motion in an inverse square law force	1	3[5]	Sem	SA	2	
0	field						
3.1	Equation of the orbit	0.5	3[5]	Sem	MCQ	2	
1							
3.1	Eccentricity	1	3[10]	Lec	Ess	2	
2							
3.1	Nature of the orbits	1	3[10]	Lec	Ess	2	
3							
3.1	Kepler's laws of planetary motion	0.5	3[5]	Lec	Ess	2	
4							
3.1	Kepler's III law verification –	0.5	3[5]	Lec	Ess	2	
5	determination of mass of sun from						
	Kenler's III law						
	COLLISIONS OF PARTICLES AND SCATTERING						
IV	COLLISIONS OF PARTICLE	S AN	D SCAT	TERIN	G		
IV 4.1	COLLISIONS OF PARTICLE Introduction – angle of scattering	S AN 0.5	D SCAT 4[10]	TERIN Lec	G Ess	1	
IV 4.1 4.2	COLLISIONS OF PARTICLE Introduction – angle of scattering Elastic and inelastic scattering	S AN 0.5 0.5	D SCAT 4[10] 4[10]	TERIN Lec GD	G Ess SA	1	
IV 4.1 4.2 4.3	COLLISIONS OF PARTICLE Introduction – angle of scattering Elastic and inelastic scattering Elastic scattering	S AN 0.5 0.5 1	D SCAT 4[10] 4[10] 4[5]	TERIN Lec GD Lec	G Ess SA Pro	1 1 1,2	
IV 4.1 4.2 4.3 4.4	COLLISIONS OF PARTICLE Introduction – angle of scattering Elastic and inelastic scattering Elastic scattering Laboratory and centre of mass systems	S AN 0.5 0.5 1 1	D SCAT 4[10] 4[10] 4[5] 4[10]	TERIN Lec GD Lec GD	G Ess SA Pro Ess	1 1 1,2 1	
IV 4.1 4.2 4.3 4.4	COLLISIONS OF PARTICLE Introduction – angle of scattering Elastic and inelastic scattering Elastic scattering Laboratory and centre of mass systems – definitions with figures	S AN 0.5 0.5 1 1	D SCAT 4[10] 4[10] 4[5] 4[10]	TERIN Lec GD Lec GD	G Ess SA Pro Ess	1 1,2 1	
IV 4.1 4.2 4.3 4.4 4.5	COLLISIONS OF PARTICLE Introduction – angle of scattering Elastic and inelastic scattering Elastic scattering Laboratory and centre of mass systems – definitions with figures Linear momenta are equal and opposite	S AN 0.5 0.5 1 1	D SCAT 4[10] 4[10] 4[5] 4[10] 4[10]	TERIN Lec GD Lec GD Lec	G Ess SA Pro Ess Qui,	1 1,2 1 1	
IV 4.1 4.2 4.3 4.4 4.5	COLLISIONS OF PARTICLEIntroduction – angle of scatteringElastic and inelastic scatteringElastic scatteringLaboratory and centre of mass systems– definitions with figuresLinear momenta are equal and opposite	S AN 0.5 0.5 1 1	D SCAT 4[10] 4[10] 4[5] 4[10] 4[10]	TERIN Lec GD Lec GD Lec	G Ess SA Pro Ess Qui, Ess	1 1,2 1 1	
IV 4.1 4.2 4.3 4.4 4.5 4.6	COLLISIONS OF PARTICLE Introduction – angle of scattering Elastic and inelastic scattering Elastic scattering Laboratory and centre of mass systems – definitions with figures Linear momenta are equal and opposite Velocities of the particles in the CM	S AN 0.5 1 1 1	D SCAT 4[10] 4[5] 4[10] 4[10] 4[10] 4[5]	TERIN Lec GD Lec GD Lec Lec	G Ess SA Pro Ess Qui, Ess Ess	1 1,2 1 1 1	
IV 4.1 4.2 4.3 4.4 4.5 4.6	COLLISIONS OF PARTICLE Introduction – angle of scattering Elastic and inelastic scattering Elastic scattering Laboratory and centre of mass systems – definitions with figures Linear momenta are equal and opposite Velocities of the particles in the CM system are equal	S AN 0.5 1 1 1	D SCAT 4[10] 4[10] 4[5] 4[10] 4[10] 4[5]	TERIN Lec GD Lec GD Lec Lec	G Ess SA Pro Ess Qui, Ess Ess	1 1,2 1 1 1	
IV 4.1 4.2 4.3 4.4 4.5 4.6 4.7	COLLISIONS OF PARTICLEIntroduction – angle of scatteringElastic and inelastic scatteringElastic scatteringLaboratory and centre of mass systems– definitions with figuresLinear momenta are equal and oppositeVelocities of the particles in the CMsystem are equalTotal kinetic energy is equal before and	S AN 0.5 0.5 1 1 1 1 1	D SCAT 4[10] 4[5] 4[10] 4[10] 4[10] 4[5] 4[10]	TERIN Lec GD Lec GD Lec Lec	G Ess SA Pro Ess Qui, Ess Ess Pro	1 1,2 1 1 1 1,2	
IV 4.1 4.2 4.3 4.4 4.5 4.6 4.7	COLLISIONS OF PARTICLE Introduction – angle of scattering Elastic and inelastic scattering Elastic scattering Laboratory and centre of mass systems – definitions with figures Linear momenta are equal and opposite Velocities of the particles in the CM system are equal Total kinetic energy is equal before and after scattering	S AN 0.5 0.5 1 1 1 1 1	D SCAT 4[10] 4[10] 4[5] 4[10] 4[10] 4[5] 4[10]	TERIN Lec GD Lec GD Lec Lec	G Ess SA Pro Ess Qui, Ess Ess Pro	1 1,2 1 1 1 1,2	
IV 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	COLLISIONS OF PARTICLEIntroduction – angle of scatteringElastic and inelastic scatteringElastic scatteringLaboratory and centre of mass systems– definitions with figuresLinear momenta are equal and oppositeVelocities of the particles in the CMsystem are equalTotal kinetic energy is equal before andafter scatteringRelations between different quantities	S AN 0.5 1 1 1 1 1 1 1	D SCAT 4[10] 4[10] 4[5] 4[10] 4[10] 4[10] 4[10] 4[10]	TERIN Lec GD Lec GD Lec Lec Lec	G Ess SA Pro Ess Qui, Ess Ess Pro MCQ,	1 1,2 1 1 1 1,2 1,2 1	
IV 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	COLLISIONS OF PARTICLEIntroduction – angle of scatteringElastic and inelastic scatteringElastic scatteringLaboratory and centre of mass systems– definitions with figuresLinear momenta are equal and oppositeVelocities of the particles in the CM system are equalTotal kinetic energy is equal before and after scatteringRelations between different quantities in the laboratory and CM System	S AN 0.5 0.5 1 1 1 1 1 1 1	SCAT 4[10] 4[10] 4[5] 4[10] 4[10] 4[10] 4[10] 4[10] 4[5] 4[10] 4[10] 4[10] 4[10]	TERIN Lec GD Lec Lec Lec Lec	G Ess SA Pro Ess Qui, Ess Ess Pro MCQ, Pro	1 1,2 1 1 1,2 1,2 1	
IV 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	COLLISIONS OF PARTICLEIntroduction – angle of scatteringElastic and inelastic scatteringElastic scatteringLaboratory and centre of mass systems– definitions with figuresLinear momenta are equal and oppositeVelocities of the particles in the CMsystem are equalTotal kinetic energy is equal before andafter scatteringRelations between different quantitiesin the laboratory and CM SystemKinematics of elastic scattering in the	S AN 0.5 0.5 1 1 1 1 1 1 1 1 1 1	SCAT 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10]	TERIN Lec GD Lec Lec Lec GD GD	G Ess SA Pro Ess Qui, Ess Ess Pro MCQ, Pro Ess	1 1,2 1 1 1,2 1 1,2 1 1	
IV 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	COLLISIONS OF PARTICLEIntroduction – angle of scatteringElastic and inelastic scatteringElastic scatteringLaboratory and centre of mass systems– definitions with figuresLinear momenta are equal and oppositeVelocities of the particles in the CMsystem are equalTotal kinetic energy is equal before andafter scatteringRelations between different quantitiesin the laboratory and CM SystemKinematics of elastic scattering in thelaboratory system	S AN 0.5 1 1 1 1 1 1 1 1 1	SCAT 4[10] 4[10] 4[5] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10]	TERIN Lec GD Lec Lec Lec GD Sem	G Ess SA Pro Ess Qui, Ess Ess Pro MCQ, Pro Ess	1 1,2 1 1 1 1,2 1 1,2 1	
IV 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.1	COLLISIONS OF PARTICLEIntroduction – angle of scatteringElastic and inelastic scatteringElastic scatteringLaboratory and centre of mass systems– definitions with figuresLinear momenta are equal and oppositeVelocities of the particles in the CM system are equalTotal kinetic energy is equal before and after scatteringRelations between different quantities in the laboratory and CM SystemKinematics of elastic scattering in the laboratory systemTo show that the heavy particle hardly	S AN 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1 1	SCAT 4[10] 4[10] 4[5] 4[10] 4[10] 4[10] 4[10] 4[10] 4[5] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10]	TERIN Lec GD Lec Lec Lec GD Sem Lec	G Ess SA Pro Ess Qui, Ess Ess Pro MCQ, Pro Ess Ess	1 1,2 1 1 1,2 1 1,2 1 1 1	
IV 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.1 0	COLLISIONS OF PARTICLEIntroduction – angle of scatteringElastic and inelastic scatteringElastic scatteringLaboratory and centre of mass systems– definitions with figuresLinear momenta are equal and oppositeVelocities of the particles in the CMsystem are equalTotal kinetic energy is equal before andafter scatteringRelations between different quantitiesin the laboratory and CM SystemKinematics of elastic scattering in thelaboratory systemTo show that the heavy particle hardlydeviates from its path	S AN 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1 1	SCAT 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[5] 4[10] 4[5] 4[10] 4[5] 4[10] 4[10] 4[10] 4[10] 4[10]	TERIN Lec GD Lec Lec Lec GD Sem Lec	G Ess SA Pro Ess Qui, Ess Ess Pro MCQ, Pro Ess Ess	1 1,2 1 1 1,2 1,2 1 1 1 1	
IV 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.1 0 4.1	COLLISIONS OF PARTICLEIntroduction – angle of scatteringElastic and inelastic scatteringElastic scatteringLaboratory and centre of mass systems– definitions with figuresLinear momenta are equal and oppositeVelocities of the particles in the CMsystem are equalTotal kinetic energy is equal before andafter scatteringRelations between different quantitiesin the laboratory and CM SystemKinematics of elastic scattering in thelaboratory systemTo show that the heavy particle hardlydeviates from its pathLoss of kinetic energy	S AN 0.5 0.5 1 1 1 1 1 1 1 1 1 0.5	SCAT 4[10] 4[10] 4[10] 4[5] 4[10] 4[10] 4[10] 4[10] 4[5] 4[10] 4[5] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[5]	TERIN Lec GD Lec Lec Lec GD Sem Lec Lec	G Ess SA Pro Ess Qui, Ess Ess Pro MCQ, Pro Ess Ess	1 1,2 1 1 1 1,2 1 1,2 1 1 1 1	
IV 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.1 0 4.1	COLLISIONS OF PARTICLEIntroduction – angle of scatteringElastic and inelastic scatteringElastic scatteringLaboratory and centre of mass systems– definitions with figuresLinear momenta are equal and oppositeVelocities of the particles in the CM system are equalTotal kinetic energy is equal before and after scatteringRelations between different quantities in the laboratory and CM SystemKinematics of elastic scattering in the laboratory systemTo show that the heavy particle hardly deviates from its path Loss of kinetic energy	S AN 0.5 0.5 1 1 1 1 1 1 1 0.5 0.5	SCAT 4[10] 4[10] 4[5] 4[10] 4[10] 4[10] 4[10] 4[5] 4[10] 4[5] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10]	TERIN Lec GD Lec Lec Lec GD Sem Lec Lec	G Ess SA Pro Ess Qui, Ess Ess Pro MCQ, Pro Ess Ess Ess	1 1,2 1 1 1,2 1 1,2 1 1 1 1	
IV 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.1 0 4.1 1 4.1	COLLISIONS OF PARTICLEIntroduction – angle of scatteringElastic and inelastic scatteringElastic scatteringLaboratory and centre of mass systems – definitions with figuresLinear momenta are equal and oppositeVelocities of the particles in the CM system are equalTotal kinetic energy is equal before and after scatteringRelations between different quantities in the laboratory and CM SystemKinematics of elastic scattering in the laboratory systemTo show that the heavy particle hardly deviates from its path Loss of kinetic energy	S AN 0.5 0.5 1 1 1 1 1 1 1 1 0.5 0.5	SCAT 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[5] 4[10] 4[5] 4[10] 4[5] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10]	TERIN Lec GD Lec Lec Lec GD Sem Lec Lec Lec	G Ess SA Pro Ess Qui, Ess Ess Pro MCQ, Pro Ess Ess Ess	1 1,2 1 1 1,2 1 1,2 1 1 1 1 1 1	
IV 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.1 0 4.1 1 4.1	COLLISIONS OF PARTICLEIntroduction – angle of scatteringElastic and inelastic scatteringElastic scatteringLaboratory and centre of mass systems – definitions with figuresLinear momenta are equal and oppositeVelocities of the particles in the CM system are equalTotal kinetic energy is equal before and after scatteringRelations between different quantities in the laboratory and CM SystemKinematics of elastic scattering in the laboratory systemTo show that the heavy particle hardly deviates from its path Loss of kinetic energyInelastic scattering	S AN 0.5 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	SCAT 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[5] 4[10] 4[5] 4[10] 4[5] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[10] 4[5] 4[5] 4[5]	TERIN Lec GD Lec GD Lec Lec GD Sem Lec Lec	G Ess SA Pro Ess Qui, Ess Ess Pro MCQ, Pro Ess Ess Ess	1 1,2 1 1 1,2 1 1,2 1 1 1 1 1	
IV 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.1 0 4.1 1 4.1 2 4.1 2 4.1	COLLISIONS OF PARTICLEIntroduction – angle of scatteringElastic and inelastic scatteringElastic scatteringLaboratory and centre of mass systems– definitions with figuresLinear momenta are equal and oppositeVelocities of the particles in the CM system are equalTotal kinetic energy is equal before and after scatteringRelations between different quantities in the laboratory and CM SystemKinematics of elastic scattering in the laboratory systemTo show that the heavy particle hardly deviates from its path Loss of kinetic energyInelastic scatteringEndoergic and exoergic reactions To	S AN 0.5 0.5 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 1	SCAT 4[10] 4[10] 4[10] 4[5] 4[10] 4[10] 4[10] 4[10] 4[5] 4[10] 4[5] 4[10] 4[5] 4[10] 4[10] 4[10] 4[10] 4[5] 4[5] 4[5] 4[5] 4[5] 4[5]	TERIN Lec GD Lec Lec Lec GD Sem Lec Lec Lec	G Ess SA Pro Ess Uui, Ess Ess Ess MCQ, Pro Ess Ess Ess Ess	1 1,2 1 1 1,2 1 1,2 1 1 1 1 1 1 1 1	

	≥0					
4.1	Cross-sections – Differential and total	0.5	4[5]	CL	SA	2
4	scattering cross sections					
4.1	Rutherford scattering cross-section	0.5	4[5]	CL	Ess	2
5	formula					
V	NON-LINEAR	DYNA	MICS			
5.1	Dynamical System: Linear and Non-	1	5[10]	TPS	SA	3
	Linear forces					
5.2	Mathematical Implications of Non-	1	5[10]	Lec	Ess	3
	linearity: Linear and Non- Linear					
	systems					
5.3	Effects of Non-linearity	1	5[10]	Lec	Ess,	3
5.4	Linear Oscillations: Free Oscillations-	1	5[10]	CS	Ess	3
	Damped Oscillations-Forced Oscillations					
5.5	Non-linear Oscillations	1	5[10]	CS	Ess	3
5.6	Bifurcations	1	5[5]	Lec	SA	3
5.7	Classification of Equilibrium points-2D	1	5[10]	Lec	Ess	3
	case: General criteria for stability-					
	Classification of equilibrium(Singular					
	points)					
5.8	Limit Cycle motion	1	5[10]	CL	Pro,	3
5.9	Periodic attractor	1	5[10]	CL	Ess,	3
5.1	Poincare-Bendixson theorem	1	5[10]	CL	Pro	3
0						
5.1	Fermi Pasta Ulam experiment	1	5[5]	Lec	SA	3
1						

BOOKS FOR REFERENCE:

- 1. Herbert Goldstein, Classical Mechanics, Addison-Wisley Publishing Co., London, 1980.
- 2. R.G. Takwale & P. Puranik, Introduction to Classical Mechanics, Tata McGraw Hill Publishing Co., Ltd., New Delhi, 1983.
- 3. M. Lakshmanan and S. Rajasekar, "Nonlinear Dynamics: Integrability Chaos and Pattern", Springer Verlag, Berlin, 2003.
- 4. Greiner, Classical Mechanics, Springer, Springer International Edition, New York, 2004.
- 5. Goldstein, Poole & Safko, Classical Mechanics, Pearson Education, New York, 2004.
- 6. N.C. Rana, P.S. Joag, Classical Mechanics, Tata McGraw Hill, New Delhi, 2004.
- 7. M. Lakshmanan and K. Murali, Chaos in Nonlinear oscillators, World Scientific Co., Singapore, 1996.

Course Title:	ELECTR	RONICS & ADVANCED PHYSICS	5 I	Course Type: Practical
				Course Code: 23PPP1
Total Hours: 9	0	Hours/Week: 6		Credits: 4
Pass-Out Polic	y:			
Minimum Con	tact Houi	rs: 54		
Total Score %	: 100	Internal: 40	Ex	kternal: 60
Minimum Pass	s %: 50	[No Minimum for Internal]		

Course Creator:	Expert 1:	Expert 2:
Prof. A. Charles Hepzy	Dr. D.J. Jeejamol	Dr. H. Adlin Mahiba
Roy	,	
Asso. Prof., Faculty Head	Assi. Prof. of Physics	Assi. Prof. of Physics
+919944261881	+917598629087	+91 9486578077
achroy66@gmail.com	lomajeej@gmail.com	adlinemahiba1@gmail.com

CLO No.	Expected Course Learning Outcome Upon completion of this course, the students will be able to:	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	Cognitive Level CL	Knowled ge Catogory KC
CLO- 1	Improve the analytical and observation ability in Physics Experiments to determine any physical constant for materials;	5[10] 9[10]	1,2,6,7, 8	U Ap	Р
CLO- 2	Get an in-depth knowledge on designing electronic circuits;	5[10] 9[10]	1,2,6,7, 8	U Ap An	F, P
CLO- 3	Familiarize in extracting circuit parameters.	5[10] 9[10]	1,2,6,7, 8	Ap E	С, Р
CLO- 4	The students will be able to use the different components and equipment in physics practical.	5[10] 9[10]	1,2,6,7, 8	An E	Р
CLO- 5	The students will also able to work effectively and safely in the laboratory environment independently and as well as in teams.	5[10] 9[10]	1,2,6,7, 8	Ap C	Р, М

No.	Course Description				
1	Determination of Young's modulus and Poisson's ratio by Hyperbolic				
	fringes Cornu's Method				
2	Determination of Viscosity of the given liquidMeyer's disc				
3	Measurement of Coefficient of linear expansion- Air Wedge Method				
4	Determination of thickness of the enamel coating on a wire by diffraction				
5	Determination of Rydberg's constant -Hydrogen spectrum				
6	Measurement of Band gap energy- Thermistor.				
7	Determination of Planck's constant-LED Method				
8	Determination of Specific charge of an electron-Thomson's Method				
9	Determination of Compressibility of a liquid using Ultrasonics				
10	Measurement of conductivity- Four probe method				
11	Find the wavelength of diode laser/He-Ne Laser using diffraction grating				
12	Determination diffraction pattern of light with circular aperture using diode				

	/He-Ne laser
13	Construction of relaxation oscillator using UJT
14	Characteristics of FET
15	V- I Characteristics of different colours of LED
16	Study of important electrical characteristics of IC741
17	Construction of Schmidt trigger circuit using IC 741 for a given hysteresis-
17	application as squarer
18	Construction of square wave &TRIANGULAR WAVE generator using IC 741
19	Construction of pulse generator using the IC 741 – Application of Frequency
17	divider
20	Construction of pulse generator using the IC 555 – Application as frequency
20	divider
21	Study of Binary to Gray and Gray to Binary code conversion
22	Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted
	and R/2R ladder type)
23	Basic gates (OR, AND, NOT, XOR) from Universal gates - NAND and NOR
24	Study of R-S, clocked R-S and D-Flip flop using NAND gates

BOOKS FOR REFERENCE

- 1. S.P. Singh, Advanced Practical Physics, Vol. I & II, Pragati Prakashan, New Delhi, 2001.
- 2. F. Tyler , A Lab Manual of Physics, Edward Arnold Publisher Ltd., 1970.
- 3. C.L. Arora, Practical Physics, S. Chand & Co., New Delhi, 2001
- 4. K.A. Navas, Electronics Laboratory Manual, vol. I, IV Ed., Rajath Publisher, Ernakulam
- 5. Navas, Elevtronic Laboratory Manual, vol. II., IV Ed., Rajath Publisher, Ernakulam
- 6. J.D. Karyachen, S. Shyam Mohan, Electronics Lab Manual, vol. II, Ayodhaya Publication II Ed., Kottayam, 2011
- 7. Kar, Advanced Practical Electronics, Books and Allied (P) Ltd, Kolkatta, 2010

Course Title: ENERG	Course Type: Theory	
		Course Code: 23PPEA
Total Hours: 90	Hours/Week: 6	Credits: 4
Pass-Out Policy :		
Minimum Contact Hour	s: 54	
Total Score %: 100	Internal: 4	O External: 60
Minimum Pass %: 50	[No Minimum for Internal]	

Course Creator:	Expert 1:	Expert 2:
Prof. A. Charles Hepzy Roy	Dr. Y. Premila Rachelin	Dr. H. Adlin Mahiba
Asso. Prof., Faculty Head	Asso. Prof. of Physics	Assi. Prof. of Physics
+919944261881	+919489620591	+91 9486578077
achroy66@gmail.com	premilarachelin@gmail.com	adlinemahiba1@gmail.com

CLO No.	Course Learning Outcome Upon completion of this course, students will be able to:	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	Cognitive Level CL	Knowl edge Catogo ry KC
CLO- 1	To identify various forms of renewable and non-renewable energy sources.	1[20]	1,2,3,6, 8	R	С
CLO- 2	Understand the principle of utilizing the oceanic energy and apply it for practical applications.	1[20]	1,2,3,6, 8	U	F
CLO- 3	Discuss the working of a windmill and analyze the advantages of wind energy.	1[20]	1,2,3,6, 8	Ap	С, Р
CLO- 4	Distinguish aerobic digestion process from anerobic digestion	1[20]	1,2,3,6, 8	Ap, An	F, P
CLO- 5	Understand the components of solar radiation, their measurement and apply them to utilize solar energy	1[20]	1, <mark>2,3,</mark> 6, 8	U, E	P,M

Module	Course Description	Hours	% CLO Mapping with Module	Learning Activitie	Assessment Tasks	Reference
Ι	INTRODUCTION TO	ENERGY	SOURCES	5		
1.1	Conventional energy sources	2	1[10]	Lec	MCQ, Ess	1
1.2	Non-Conventional energy sources	2	1[10]	Lec	Ess	1
1.3	Availability of energy sources	2	1[5]	Lec	SA	1
1.4	Prospects of Renewable energy sources	1	1[10]	GD	Pro	1
1.5	Energy from other sources	2	1[5]	Lec	Pro	1
1.6	Chemical energy	1	1[10]	Lec	Ess	1
1.7	Nuclear energy	2	1[5]	Lec	SA	1
1.8	Geo thermal energy	2	1[5]	GD	Pro	1

1.9	Hydraulic energy	1	1[5]	Leo	SA SA	1
1.1 0	Energy storage and distribution	2	1[10	1[10] TPS		1
II	ENERGY FRO	MTH	E OCEAI	NS		
2.1			2[10]	Lec	MCO.	1
	Energy Utilization	1	-[]		Ess	
2.2	Energy from tides	2	2[10]	GD	SA	1
2.3	Ocean thermal energy	1	2[10]	Lec	Ess	1
2.4	Basic principles of tidal power	1	2[5]	Lec	Ess	1
2.5	Component of Tidal power plant	1	2[10]	Lec	SA	1
2.6	Operation methods of Utilization of		2[10]	Lec	SA	1
	tidal energy	2	-[-0]	200		-
2.7	Prospects of Tidal energy in India	1	2[10]	Lec	Pro	1
2.8	Principle of Ocean Thermal energy	_	2[10]	Lec	Pro	1
	conversion	2			_	
2.9	Open cycle OTEC System-Closed cycle OTEC system	1	2[5]	GD	Lec	3
2.10	Prospects of OTEC in India	1	2[5]	Sem	Ess	1
III	WIND ENERGY SC	URCE	<u> </u>			
3.1	Basic principles of Wind energy	1	3[10]	Lec	MCQ Fcc	1
32	Wind velocity	1	3[5]	Lec	, 135 Fee	1
3.2	Wind energy conversion Principles	1	3[5]	Lec	SA SA	2
3.4	Power in Wind	1	3[10]	GD	Ess	2
3.5	Force in the blades	1	3[10]	Lec	Oui.	
			- L - J		Ess	1
3.6	Advantages and disadvantages of	1	3[10]	Lec	Ess	1
	wind energy conversion systems (WECS)					
3.7	Energy storage	1	3[10]	Lec	SA	2
3.8	Application of Wind energy- Pumping	1	3[5]	GD	MCQ	1
	applications				_	
3.9	Direct heat applications	1	3[5]	Sem	SA	2
3.10	Electric generation applications	1	3[5]	Sem	SA	2
IV	ENERGY FROM B	IOMAS	SS		_	
4.1	Biomass conversion technologies	1	4[10]	Lec	Qui	2
4.2	Wet and dry Process	1	4[10]	Lec	SA	2
4.3	Photosynthesis	1	4[5]	Lec	SA	2
4.4	Biogas generation	1	4[10]	GD	Ass	1
4.5	Introduction-basic process:Aerobic	1	4[10]	Lec	Ουί	1
	and anaerobic digestion	1			Qui	L
4.6	Advantages of anaerobic digestion	1	4[5]	GD	SA	2
4.7	Factors affecting bidirectional and generation of gas	1	4[10]	GD	Ess	2
4.8	Biogas from waste food	1	4[10]	GD	MCQ	1
4.9	Properties of biogas	1	4[10]	Lec	SA	1

4.10	Utilization of biogas	1	4[5]	EL	Ess	1	
V	SOLAR ENERGY SOURCES						
5.1	Solar radiation and its measurement	1	5[10]	Lec	Ass	2	
5.2	Solar cells	1	5[5]	EL	Sem	1	
5.3	Solar cells for direct conversion of solar energy to electric power	1	5[5]	EL	Sem	1	
5.4	Solar cell parameter-solar cell	1	5[5]	CS	Ess	4	
	electrical characteristics						
5.5	Efficiency	1	5[5]	Lec	Qui	4	
5.6	Solar water heater	1	5[5]	EL	Ess	1	
5.7	Solar distillation	1	5[5]	Lec	SA	1	
5.8	Solar cooking	1	5[5]	EL	Ess	1	
5.9	Solar green house	1	5[10]	GD	Sem	1	
5.10	Solar pond and its applications	1	5[5]	GD	Ess	1	

BOOKS FOR REFERENCE:

- G.D. Rai, 1996, Non-convention sources of, 4th edition, Khanna publishers, New Delhi.
- 2. S. Rao and Dr. ParuLekar, Energy technology.
- 3. M. P. Agarwal, Solar Energy, S. Chand and Co. New Delhi (1963)
- Solar energy, principles of Thermal collection and storage by S. P. Sukhatme. 2nd edition, Tata McGraw-Hill Publishing Co. Lt, New Delhi (1997)
- 5. Energy Technology by S. Rao and Dr. Parulekar

Course Title:	DIGITAL INTE	GRATED ELECTRONICS	Course Type: Theory
			Course Code: 23PPEC
Total Hours: 9	90	Hours/Week: 6	Credits: 4
Pass-Out Polic	cy:		
Minimum Con	tact Hours: 54		
Total Score %	: 100	Internal: 40	External: 60
Minimum Pas	s %: 50 [No M	Minimum for Internal]	
Course Creat	<u>or:</u>	Expert 1:	Expert 2:
Prof. A. Charl Roy	les Hepzy	Dr. D. Hudson Oliver	
Asso. Prof., F	Faculty Head	Assi. Prof. of Physics	
+919944261	881	+919952654515	
achroy66@g	<u>mail.com</u>	hudson2612@gmail.com	

CLO No.	Expected Course Learning Outcome Upon completion of this course, the students will be able to:	PLO % MAPPED WITH CLO	CLO & PLO MAPP ED WITH GA	Cognitiv e Level CL	Knowl edge Catog ory KC
CLO- 1	Understanding regarding basic logic circuits	5[10] 6[10]	1,2,5 ,6,10	U, Ap, An, C	С, Р

CLO- 2	Knowledge in basic memory elements	5[10] 6[10]	1,2,5 ,6,10	U, Ap, An	С, Р
CLO- 3	Idea in designing binary and non- binary counters	5[10] 6[10]	1,2,5 ,6,10	Ap, An, E	С, Р, М
CLO- 4	Expertise in designing memory cells	5[10] 6[10]	1,2,5 ,6,10	Ap, An, C	F, C, P
CLO- 5	Understanding and applying the concept of signal transfer incircuits	5[10] 6[10]	1,2,5 ,6,10	U, Ap, An, C	С, Р, М

Module	Course Description	Hours	% CLO Mapping with Module	Learning Activitie	Assessment Tasks	Reference
Ι	Logic Circuits					
1.1	The resistor transistor logic	1	1[10]	Lec	Qui	1
1.2	Fan out in RTL	1	1[10]	00	MCQ	1
1.3	Input / output characteristics of RTL	1	1[5]	BS	Ass	1
1.4	Diode transistor logic	0.5	1[5]	PT	SA	1
1.5	Fan out in DTL	1	1[10]	GD	Sem	1
1.6	Input / output characteristics of DTL	1	1[10]	GT	Ass	1
1.7	Transistor – Transistor logic	1	1[10]	PT	Qui	1
1.8	Input volt ampere characteristics of TTL	0.5	1[10]	Lec	Ass	1
1.9	Emitter coupled logic gates	1	1[5]	РТ	SA	1
1.10	MOS gates	1	1[5]	GD	Sem	1
1.11	Rise time and fall time	1	1[10]	Lec	Qui	1
1.12	CMOS gates	1	1[10]	TPS	Sem	1
	II	Flip	o Flops			
2.1	Flip Flop as a memory element	1	2[10]	TPS	Sem	1
2.2	Flip Flop using NAND gates	1	2[5]	EL	MPr	1
2.3	Clocked flip-flops (need for a clock)	1	2[10]	SI	Ass	1
2.4	The Master slave flip flop	1	2[10]	GT	Ass	1
2.5	AC coupled edge triggered flip flop	1	2[10]	Lec	Ess	1
2.6	Propagation delay flip flop	1	2[5]	EL	Qui	1
2.7	J.K. flip flop	1	2[10]	GD	Ass	1
2.8	The clocked A.C. coupled flip flop	1	2[10]	PT	Ess	1
2.9	The ECL flip flop	1	2[10]	00	Qui	1
2.10	MOS flip flops	1	2[10]	CL	Sem	1
2.11	Type D – MOS flip flops	1	2[10]	PT	Ass	1
	III Registers a	nd Co	unters			
3.1	The shift Register	1	3[5]	TPS	Sem	1
3.2	Clocking	1	3[5]	GD	Ass	1

2.2	Serial-narallel data transfer	1	2[10]	CTT	0.	1
3.3	End around carry	1	3[10]	GT	Qui	1
3.4	Shift right register	1	3[10]	PT	Ess	1
3.5	Shift left register		3[5]	TPS	Sem	1
3.6	Dinnle counter	1	3[10]	TPS	Sem	1
3.7	Nothed to improve the counter gread	2	3[5]	Lec	Ass	1
3.8	Neurod to improve the counter speed	1	3[10]	Lec	Qui	1
3.9	Non binary counter	1	3[10]	SI	SA	1
3.10	Mod 3 counter	1	3[10]	EL	Ass	1
3.11	Up-down ripple counter	1	3[5]	GD	Sem	1
3.12	The up-down synchronous counter	1	3[5]	Lec	Qui	1
3.13	Ring counter	1	3[5]	TPS	Sem	1
	IV Semi	icond	uctor M	emorie	es	
4.1	Types of memories	1	4[10]	TPS	Sem	1
4.2	Shift register sequential memories	1	4[10]	Lec	Ass	1
4.3	MOS register stages	2	4[10]	РТ	Oui	1
4.4	CMOS register stages	1	4[10]	РТ	Oui	1
4.5	The read only memory (ROM)	1	4[10]	GT	SA	1
4.6	Implementation of ROMs	1	4[10	GD	Ass	1
4.7	Programmable and Erasable ROM	1	4[10]	Lec	Ass	1
4.8	Applications of ROM	1	4[10]	00	Ess	1
4.9	Bipolar function Transistor Random AccessMemory Cell (RAM)	1	4[5]	РТ	MCQ	1
4.10	MOS RAMs	1	4[5]	CS	Ass	1
4.11	Organization of RAM	1	4[5]	Lec	MCQ	1
4.12	Charge Couple Devices (CCD)		4[5]	CL	Sem	1
	V Sv	witch	es and (Conver	ters	
5.1	Diode gate	1	5[10]	Lec	Ass	1
5.2	Transistor gate	1	5[10]	00	Qui	1
5.3	FET gate	1	5[5]	GD	Sem	1
5.4	CMOS gate	1	5[10]	РТ	Sem	1
5.5	Application of analog switches	1	5[10]	Lec	Ass	1
5.6	Sampling theorem	2	5[5]	GT	мсо	1
5.7	Time division multiplexing	1	5[10]	CS	Ess	1
5.8	Quantization	1	5[10]	TPS	Sem	1
5.9	The weighed resistor D/A	1	5[10]	EL	Ass	1
5.10	A/D converter	1	5[10]	FL	Ass	1
5.10	Parallel comparator type	1	5[5]	рт	Som	1
5.12	Successive approximation converter	-	5[5]	Lec	Acc	1
5.14			1 2[2]	Lec	A\$\$	1

BOOKS FOR REFERENCE:

- 1. Herbert Taub and Donald Schilling, Digital Integrated Electronics, McGraw-HillInternational Editions, New Delhi (1989).
- 2. Albert Paul Malvino and Donald P Leach, Digital Principles and Applications, McGraw HillInternational Editions, New Delhi 1969).
- 3. M. Morris Mano, Digital Logic and Computer Design, Prentice Hall of

IndiaPVT. Ltd, NewDelhi (2001).

SEMESTER II

Course Title: SOLID ST	ATE PHYSICS – I	Course Type: Theory			
		Course Code: 23PP21			
Total Hours: 9 0	Hours/Week: 6	Credits: 4			
Pass-Out Policy :					
Minimum Contact Hours: 54					
Total Score %: 100	Internal: 40	External: 60			
Minimum Pass %: 50	[No Minimum for Internal]]			
<u>Course Creator:</u>	<u>Expert 1:</u>	Expert 2:			
Prof. A. Charles Hepzy Roy	Dr. C. Besky Job	Dr. Y. Sheeba Sherlin			
Asso. Prof., Faculty Head	Asso. Prof. of Physics	Asso. Prof. of Physics			
+919944261881	+919487026024	+919442304397			
achroy66@gmail.com	cbjob1969@gmail.com	ysheebamohan@gmail.com			

CLO No.	Expected Course Learning Outcome Upon completion of this course, students will be able to:	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	Cognitive Level CL	Knowledge Catogory KC
CLO- 1	Understanding position of atoms in crystal lattice and to name the crystal planes in terms of Miller Indices and Skills in tracing elastic waves in crystals	2[10] 7[10]	1,2,3	R, U	C, F
CLO- 2	Perspective in the concept of constructing reciprocal lattice	2[10] 7[10]	1,2,3	U, Ap	F, P
CLO- 3	Awareness in confirming the dielectric properties of crystals	2[10] 7[10]	1,2,3	An	Р
CLO- 4	In-depth knowledge in phonon vibration and the resulted thermal anomalies	2[10] 7[10]	1,2,3	An, E	Р, М
CLO- 5	Knowledge regarding the structural thermal, optical, electrical, dielectric, dielectric properties of solids	2[10] 7[10]	1,2,3	E, C	F, M

Module	Course Description	Hours	% CLO Mapping with Module	Learning Activitie	Assessment Tasks	Reference
I	CRYSTAL STRUCTURE					
1.1	Some fundamental definitions in Crystallography	1	1[5]	Lec	SA, Qui	1,2
1.2	Lattice parameters of an unit cell	0.5	1[10]	Lec	SA,	1,2

1.3	Hexagonal close packed structure	1.5	1[10]	Lec	Ess	1,2		
1.4	Diamond cubic structure	0.5	1[5]	GD	SA, MCQ	1,2		
1.5	Sodium chloride structure	0.5	1[10]	GD	SA, Qui	1,2		
1.6	Cesium chloride structure	0.5	1[5]	GD	SA, Qui	1,2		
1.7	Miller indices	1	1[5]	Lec	SA, Pro	1,2		
1.8	Polymorphism and Allotrophy	1	1[5]	Lec	SA	1,2		
1.9	Vanderwalls London interaction	1	1[10]	Lec	Ess	1,2		
1.10	Elastic compliance and Stiffness constants	1	1[10]	Lec	Ess	1,2		
1.11	Bulk miodulus and compressibility	1	1[10]	GD	SA	1,2		
1.12	Elastic waves in cubic crystals	1.5	1[10]	Lec	Ess	1,2		
1.13	Waves in the (100), (110) direction	1	1[5]	Lec	Ess	1,2		
II	RECIPROCAL L	ATTI	СЕ					
2.1	Diffraction of waves by crystals	0.5	2[10]	Lec	SA	1,2		
2.2	Scattered wave amplitude	0.5	2[10]	Lec	SA, Qui	1,2		
2.3	Fourier analysis	1	2[5]	Lec	Ess, MCQ	1,2		
2.4	Reciprocal lattice vectors	1	2[5]	Lec	SA	1,2		
2.5	Diffraction conditions	0.5	2[5]	GD	SA, MCQ	1,2		
2.6	Laue equations	0.5	2[5]	Lec	Ess	1,2		
2.7	Brillouin zones	1	2[5]	BS	Ess	1,2		
2.8	Reciprocal lattice to sc lattice	0.5	2[10]	BS	Ess	1,2		
2.9	Reciprocal lattice to bcc lattice	0.5	2[10]	BS	Ess	1,2		
2.10	Reciprocal lattice to fcc lattice	1	2[10]	BS	Ess	1,2		
2.11	Fourier analysis of the basis	1	2[5]	Lec	SA	1,2		
2.12	Structure factor of the bcc lattice	1	2[5]	Lec	SA	1,2		
2.13	Structure factor of the fcc lattice	1	2[5]	РТ	Ess	1,2		
2.14	Atoms form factor	1	2[5]	РТ	Ess	1,2		
2.15	Quasi crystals	1	2[5]	CL	Ass	1,2		
III DIELECTRIC PROPERTIES OF CRYSTALS								
3.1	Fundamental definitions in Dielectrics	1	3[10]	GD	SA, Qui	1,2		
3.2	Polarization	0.5	3[5]	Lec	SA	1,2		
3.3	Dielectric constant and Polarizability	0.5	3[10]	Lec	SA	1,2		
------	---	------	--------	-----	-------------	-----	--	--
3.4	Electronic polarizability	1	3[5]	Lec	Fee	1,2		
3.5	Frequency and temperature effects of polarization	1	3[10]	Lec	Ess	1,2		
3.6	Dielectric loss	1	3[5]	Lec	Ess, Pee	1,2		
3.7	Application of dielectric materials	1	3[10]	GD	SA, Ess	1,2		
3.8	Ferro electric crystals	0.5	3[10]	РТ	SA	1,2		
3.9	Classification of Ferro electric crystals	1	3[5]	Lec	Ess	1,2		
3.10	Properties of Ferro electric materials	1.5	3[5]	РТ	SA	1,2		
3.11	Landau theory of phase transition	1	3[5]	Lec	Ess	1,2		
3.12	Anti Ferro Electricity	0.5	3[10]	РТ	SA, MCQ	1,2		
3.13	Ferro electric domains	0.5	3[5]	РТ	SA, MCQ	1,2		
3.14	Piezo electricity	1	3[5]	Lec	Ess	1,2		
IV	PHONONS CRYSTAL	VIBR	ATIONS					
4.1	Vibrations of crystals with monoatomic basis	1	4[5]	Lec	SA, Qsd	1,2		
4.2	First brilloune zone	1	4[10]	Lec	Ess	1,2		
4.3	Group velocity	0.5	4[5]	Lec	SA, pro	1,2		
4.4	Long wave length limit	0.5	4[10]	Lec	SA, Pro	1,2		
4.5	Derivation of force constants from Experiment	1	4[10]	Lec	Ess	1,2		
4.6	Two atoms per primitive basis	1	4[10]	Lec	Ess	1,2		
4.7	Quantization of elastic waves	1	4[10]	BS	SA	1,2		
4.8	Phonon momentum	1	4[5]	BS	SA, Pro	1,2		
4.9	Selection rule	0.5	4[5]	Lec	SA	1,2		
4.10	Facts about diatomic lattice	1	4[10]	GD	Ess	1,2		
4.11	Optical branch of diatomic lattice	1.5	4[10]	Lec	Ess	1,2		
4.12	Acoustical branch of diatomic lattice	1	4[5]	Lec	Ess	1,2		
4.13	In classic scattering by phonons	1	4[5]	Lec	Ess	1,2		
V	V PHONONS II THERMAL PROPERTIES							
5.1	Phonon heat capacity	1	5[10]	Lec	SA, Qui	1,2		
5.2	Planck distribution	1	5[5]	Lec	Ess	1,2		

5.3	Normal mode enumeration	0.5	5[5]	Lec	SA, MCQ	1,2
5.4	Density of states in one dimensions	0.5	5[5]	Lec	Ess	1,2
5.5	Density of states in three dimensions	1	5[10]	Lec	Ess	1,2
5.6	Dulong and Petits law – statement and explanation	1	5[10]	Lec	Ess	3
5.7	Classical Theory – Dulong and Petit's specific heat theory	1	5[5]	Lec	Ess	3
5.8	Einstein's theory of Specific heat	1	5[10]	Lec	Ess, Qse	3
5.9	Debey's theory of specific heat	1	5[10]	GD	SA	3
5.10	Anharmonic crystal interactions	1	5[5]	Lec	Ess	3
5.11	Thermal expansion.	0.5	5[5]	Lec	Ess	3
5.12	Thermal conductivity	0.5	5[5]	Lec	Ess	1,2
5.13	Thermal resistivity of phonon	1	5[5]	Lec	Ess	1,2
5.14	Umklapp Processes	1	5[5]	Lec	SA	1,2
5.15	Imperfections	1	5[5]	GD	SA	1,2

- 1. Charles Kittel, Introduction to Solid State Physics, Wiley Eastern P. Ltd, Seventh Edition, 2000
- 2. S.O Pillai, Solid State Physics, Wiley Eastern Ltd., 1994
- 3. Dr. K. Ilangovan, Solid State Physics, MJP Publishers, Chennai, 2013.
- 4. J.P Srivastava, Elements of Solid State Physics, Prentice Hall of India, New Delhi, 2004.
- 5. M. Arumugam, Solid State Physics, Anuradha Agencies, 2004
- 6. M. Ali Omar, Elementary Solid State Physics, Principles and Applications, Addition-Wesly series, 1993.
- 7. Solid State Physics, Bhima Shankaran, BS Publications, Hyderabad, 2002.

Course Title: MATHE		EMATICAL PHYSICS – II	Course Type: Theory
			Course Code: 23PP22
Total Hours: 9 0		Hours/Week: 6	Credits: 4
Pass-Out Policy :			
Minimum Contac	t Hours:	54	
Total Score %: 100		Internal: 40	External: 60
Minimum Pass %	: 50 [No Minimum for Internal]	
Course Creator:		Expert 1:	Expert 2:
Prof. A. Charles He Roy	epzy	Dr. B.S. Benila	Dr. S. Sharmila Juliet
Asso. Prof., Facul	ty Head	Asso. Prof. of Physics	Assi. Prof. of Physics
+919944261881	1	+919843626563	+919487094860
achroy66@gmai	il.com	benila@scottchristian.org	sharmilabennet@gmail.com

CLO No.	Expected Course Learning Outcome Upon completion of this course, the students will be able to:	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	Cognitive Level CL	Knowledg e Catogory KC
CLO- 1	Comprehend the application of mathematical concepts needed to solve problems in physics as well as other areas of science, and acquire practical skills in the use of these methods	1[10] 6[10]	1,2,3, 5,6,8, 10	U, Ap, An	C, F
CLO- 2	Distinguish groups and construct multiplication tables and utilize various representation theories of finite groups	1[10] 6[10]	1,2,3, 5,6,8, 10	R, Ap, An, E	F, P
CLO- 3	Formulate and express a physical law in terms of tensors, and simplify it by the use of coordinate transformations (example: Hooke's law, moment of Inertia)	1[10] 6[10]	1,2,3, 5,6,8, 10	U, An, C	Р, М
CLO- 4	Identify second order linear differential equation and find the linear independent solutions. Elaborate the orthogonal polynomials and other special functions	1[10] 6[10]	1,2,3, 5,6,8, 10	U, Ap, An, C	C, P
CLO- 5	Apply integral transform (Fourier and Laplace) to solve mathematical problems of interest in physics	1[10] 6[10]	1,2,3, 5,6,8, 10	U Ap, An	F, M

Module	Course Description	Hours	% CLO Mapping with Module	Learning Activitie	Assessment Tasks	Reference
Ι	ABSTRACT GROUP THEORY					
1.1	Group – Definition, Abelian and Cyclic Groups	1	1[10]	Lec	SA, Pro	1
1.2	The Groups of Symmetry of an equilateral triangle	1	1[10]	GD	Ess	1
1.3	The Groups of Symmetry of a Square	1	1[5]	GD	Ess	1
1.4	Multiplication Table	1	1[5]	Lec, GD	SA, Pro	1
1.5	Generaors of Finite Group	1	1[5]	Lec	SA	1
1.6	Conjugate Elements and Classes	1	1[10]	Lec	Ess	1
1.7	Multiplication of Classes	1	1[10]	Lec	SA	1
1.8	Subgroups - Cosets	1	1[10]	Lec	SA	1
1.9	A Theorem on Subgroups	1	1[10]	Lec	Ess	1
1.10	Normal Subgroup and Factor Group	2	1[10]	Lec	SA	1
1.11	Isomorphism and Homomorphism	1	1[5]	Lec, GD	SA	1
1.12	Permutation Group	1	1[5]	Lec	SA	1
1.13	Direct Groups of Given Order	1	1[5]	Lec, GD	Ess	1

II	REPRESENTATION THEORY OF FINITE GROUPS					
2.1	Definition	0.5	2[10]	Lec	SA	1
2.2	Some Properties of Representation of	0.5	2[10]	Lec,	SA	1
2.2	Group	1	2[10]	GD		1
2.3	Invariant Subgroup, Reducible and Irreducible Representation		2[10]	Lec	SA, ESS	1
2.4	Theorem 1: Theorem on Representation	1	2[5]	Lec	Ess, Ass	1
2.5	Theorem 2:Schur's Lemma	1	2[5]	Lec	Ess, Ass	1
2.6	Theorem 3:Lemma	1	2[10]	Lec	Ess, Ass	1
2.7	The Orthogonality Theroem	1	2[10]	Lec	Ess, Ass	1
2.8	Interpretation of Orthogonality Theroem	1	2[10]	Lec	Ess	1
2.9	Characters of Representation	1	2[10]	Lec	Ess	1
2.10	Reduction of Reducible Representation	1	2[5]	Lec	Ess	1
2.11	The character Table of C4v	1	2[5]	Lec	SA	1
2.12	Construction of Character Tables	1	2[5]	Lec	Ess. Sem	1
2.12	Sonstruction of character rubles	-	2[0]	GD	155, 5em	1
2.13	Problems	1	2[5]	Lec, GD	Ess, Sem	1
III	TENSOR ANALYSIS					
3.1	Coordinate Transformation –	0.5	3[10]	Lec	SA, Ess	2
	Contravariant and Covariant Tensors					
3.2	Algebra of Tensors – Equality and Null	0.5	3[10]	Lec	SA	2
	Tensors – Addition and Subtraction of					
	Tensors					
3.3	Outer Product and Inner Product of	0.5	3[5]	Lec,	SA, Pro	2
	Tensors			GD		
3.4	Contraction of a Tensor	0.5	3[5]	Lec	SA, Ess	2
3.5	Symmetric and Antisymmetric Tensors	1	3[5]	Lec	Ess	2
3.6	Invariant Tensors - Kronecker Delta and Levi Civita Symbol	1	3[5]	Lec	Ess, Ass	2
3.7	Quotient Law	1	3[10]	Lec	Ess	2
3.8	Conjugate Symmetric Tensor of Rank 2	1	3[10]	Lec	Ess	2
3.9	The Fundamental Tensor	0.5	3[10]	Lec	SA, Ess	2
3.10	Contravariant Metric Tensor	0.5	3[5]	Lec	Ess	2
3.11	Asso. Tensors – Raising and lowering of	1	3[5]	Lec,	Ess, Ass	2
	Indices			GD		
3.12	Cartesian Tensors	1	3[5]	Lec	Ess	2
3.13	Applications - Hooke's law	1	3[10]	Lec	Ess,Sem	2
3.14	-Moment of Inertia	1	3[5]	Lec	Ess, Sem	2
IV	SPECIAL FUNCTIONS - II					
4.1	Bessel differential equation – solution	1	4[10]	Lec	Ess	3
4.2	Bessel functions of first and second kind	1	4[10]	Lec	Ess	3
4.3	Generating function	1	4[5]	CL	Qui	3
4.4	Recurrence formula	1	4[5]	CL	Pro	3
4.5	Orthogonality of Bessel's function	1	4[10]	Sem	SA	3
4.6	Spherical Bessel function and its	1	4[10]	Lec	Ess	3
	properties					

4.7	Hermite differential equation – solution	1	4[10]	Lec	Ess	3
4.8	Generating function	1	4[10]	GD	Pro	3
4.9	Rodrigue's formula	1	4[10]	Lec	SA,Pro	3
4.10	Recurrence Relation	1	4[10]	Lec	Ess	3
4.11	Orthogonality of Hermite polynomials	1	4[10]	Lec	Ess	3
V	FOURIER AND LAPLACE INTEGRAL T	'RAN	SFORM	[
5.1	Fourier Series	1	5[10]	Lec	SA, Qui	3
5.2	Related Problems – Uses of Fourier	1	5[10]	GD	Pro	3
	Series					
5.3	Fourier Transform – Properties.	1	5[10]	Lec	SA, Qui	3
5.4	Fourier Transform of a Derivative.	1	5[10]	Lec	SA	3
5.5	Fourier sine and cosine Transform of	1	5[10]	GD	SA	3
	Derivatives.					
5.6	Laplace Transform – Properties.	1	5[5]	Lec	MCQ	3
5.7	Laplace Transform of Derivative of a	1	5[10]	BS	SA	3
	Function.					
5.8	Laplace Transform of Integral.	1	5[5]	Lec	SA	3
5.9	Inverse Laplace Transform.	1	5[5]	GD	SA	3
5.10	Evaluation Methods: Convolution	1	5[5]	Lec	Pro	3
	Theorem					
5.11	Partial Fraction Method	1	5[10]	Lec	Pro	3
5.12	Problems related to Fourier series,	1	5[10]	GD	Ess, Pro	3
	Fourier transform, Laplace transform					
	and inverse Fourier transform					

- 1. A.W. Joshi, Elements of Group Theory for Physicists, Third edition, Wiley Eastern Ltd., 1988.
- 2. A.W. Joshi, Matrices and Tensors in Physics; Second edition, Wiley Eastern Limited, 1985.
- 3. Satyaprakash, Mathematical Physics, S. Chand Company Ltd., New Delhi, 1994.
- 4. B.S. Rajput, Mathematical Physics, Pragati Prakashan Meerut, 2005

Course Title: ELECTRONICS & ADVANCED PHYSICS II		I Course Type: Practical-II		
Course Code				
Total Hours: 9	0	Hours/Week: 6	Credits: 4	
Pass-Out Polic	cy :			
Minimum Con	tact Hour	s: 54		
Total Score %	: 100	Internal: 40	External: 60	
Minimum Pass %: 50		[No Minimum for Internal]		
Course Creat	<u>or:</u>	<u>Expert 1:</u>	Expert 2:	
Prof. A. Charle Roy	s Hepzy	Dr. C. Y. Premila Rachelin	Dr. S. Sharmila Juliet	
Asso. Prof., F Head	aculty	Asso. Prof. of Physics	Assi. Prof. of Physics	
+919944261	881	+919489620591	+919487094860	
achroy66@gm	ail.com	premilarachelin@gmail.c om	sharmilabennet@gmail.co m	

CLO No.	Expected Course Learning Outcome Upon completion of this course, the students will be able to:	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	Cognitive Level CL	Knowledge Catogory KC
CLO- 1	Improve the analytical and observation ability in Physics Experiments to determine any physical constant for materials;	1[10] 6[10]	1,2,3, 5,6,8, 10	U, Ap, An	С, Р
CLO- 2	Get an in-depth knowledge on designing electronic circuits;	1[10] 6[10]	1,2,3, 5,6,8, 10	R, An, E	F, P
CLO- 3	Familiarize in extracting circuit parameters	1[10] 6[10]	1,2,3, 5,6,8, 10	U, An, C	Р, М
CLO- 4	The students will have a good foundation in the fundamentals related to the experiments included in this course and their advanced applications.	1[10] 6[10]	1,2,3, 5,6,8, 10	U, Ap, An, C	C, P
CLO- 5	The students will be able to learn practically the interference and diffraction, thermocouple, Wheatstone bridge principles and Op-Amp.	1[10] 6[10]	1,2,3, 5,6,8, 10	U Ap, An	F, M

Sl.No	Course Description					
1	Measurement of Susceptibility of liquid - Quinke's method					
2	B-H Curve using CRO					
3	Measurement of coefficient of linear expansion -Air Wedge method					
4	Measurement of Magnetic Susceptibility -Guoy's method					
5	Determination of Numerical Aperture and Acceptance angle of optical fiber using Laser source.					
6	Hall effect in semiconductor. Determine the Hall coefficient, carrier concentration and carrier mobility.					
7	Interpretation of vibrational spectra of a given material					
8	Determination of Refractive index of liquid using diode laser/ He-Ne laser.					
9	Determination of dielectric constant of solids.					
10	Determination of lattice parameter from XRD pattern – cubic, tetragonal and hexagonal systems.					
11	To study electron spin resonance (ESR) and to determine the g-factor of free electrons for a given specimen.					
12	Determine the dielectric constant of a liquid by Lecher wire.					
13	Find the dielectric constant of a given solid (Teflon) for three different lengths as					

	functions of temperature.
14	Construction of square wave generator using IC 555 – Study of VCO
15	Construction of Schmitt trigger circuit using the IC 555 for a given hysteresis -
	Application as squarer
16	Solving simultaneous equations – IC 741 / IC LM324
17	Op-Amp – Butterworth Active Filters: Low pass and High pass
18	Analog to digital converter
19	BCD to Excess- 3 and Excess 3 to BCD code conversion
20	Arithmetic operations using IC 7483- 4-bit binary addition and subtraction.
21	Construction of Multiplexer and Demultiplexer using ICs.
22	Construction of Encoder and Decoder circuits using ICs
23	IC 7490 as scalar and seven segment display using IC7447
24	Shift register and Ring counter and Johnson counter- IC 7476/IC 7474
25	Study of synchronous parallel 4-bit binary up/down counter using IC 74193
26	Study of asynchronous parallel 4-bit binary up/down counter using IC 7493
г	

- 1. S.P. Singh, Advanced Practical Physics, Vol. I & II, Pragati Prakashan, New Delhi, 2001.
- 2. F. Tyler, A Lab Manual of Physics, Edward Arnold Publisher Ltd., 1970.
- 3. C.L. Arora, Practical Physics, S. Chand & Co., New Delhi, 2001
- 4. K.A. Navas, Electronics Laboratory Manual, vol. I, IV Ed., Rajath Publisher, Ernakulam
- 5. Navas, Elevtronic Laboratory Manual, vol. II., IV Ed., Rajath Publisher, Ernakulam
- 6. J.D. Karyachen, S. Shyam Mohan, Electronics Lab Manual, vol. II, Ayodhaya Publication II Ed., Kottayam, 2011
- 7. Kar, Advanced Practical Electronics, Books and Allied (P) Ltd, Kolkatta, 2010

Course Title: ARDUINO	HARDWARE &	Course Type: Theory
	IMINU	Course Code: 23PPEB
Total Hours: 90	Hours/Week: 6	Credits: 4
Pass-Out Policy :		
Minimum Contact Hours	54	
Total Score %: 100	Internal: 40	External: 60
Minimum Pass %: 50	[No Minimum for Internal]	
Course Creator:	Expert 1:	Expert 2:
Prof. A. Charles Hepzy Roy	Dr. C. James	Dr. S. Sharmila Juliet
Asso. Prof., Faculty Head	Asso. Prof. of Physics	Assi. Prof. of Physics
+919944261881	+919489500237	+919487094860
<u>achroy66@gmail.co</u> <u>m</u>	james@scottchristian.or g	sharmilabennet@gmail.co m

CLO- No.	Expected Course Learning Outcome Upon completion of this course, the students will be able to	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	Cogniti ve Level CL	Knowled ge Catogory KC
CLO- 1	describe the functions of various hardware components of Arduino board and work with open-source Arduino Software Integrated Development Environment (IDE). illustrate various Arduino Programming Structures.	6[10] 10[10]	1,2,3, 5,7,9, 10	U, Ap	C, P
CLO- 2	infer different Arduino Function libraries to be used with sketch	6[10] 10[10]	1,2,3, 5,7,9, 10	R, An	F, P
CLO- 3	formulate communication with peripherals through parallel and serial ports of Arduino.	6[10] 10[10]	1,2,3, 5,7,9, 10	An C	Р
CLO- 4	devise Arduino Communication with external world using sensors, and actuators.	6[10] 10[10]	1,2,3, 5,7,9, 10	R, An E	P, M
CLO- 5	design circuits and write code for developing Arduino prototypes.	6[10] 10[10]	1,2,3, 5,7,9, 10	U Ap An	М

Module	Course Description	Hours	% CLO Mapping with Modulo	Learning Activitie	Assessment Tasks	Reference
Ι	ARDUINO ENVIRONMENT					
1.1	Arduino overview	1	1[10]	Lec	MCQ	1
1.2	Arduino Board Description	1	1[10]	BS	Qui	1
1.3	Main components, inputs, and outputs	1	1[10]	TPS	Ass	1
1.4	ATMEL Microcontroller	1	1 [10]	00	Qui	1
1.5	Arduino IDE	1	1 [5]	Lec	Ass	1
1.6	Arduino Programme Structure	1	1 [10]	GD	Ass	1
1.7	Arduino Data Types	1	1 [10]	РТ	MCQ	2
1.8	Arduino – Variables & Constants	1	1 [10]	GT	Qui	2
1.9	Arduino – Operators	1	1 [5]	BS	Qui	2
1.10	Arduino – Control Statements	1	1 [10]	GD	Ass	2
1.11	Arduino – Loops	2	1 [10]	SM	SA	2
Π	ARDUINO FUNCTION LIBRARIES WITH SKE	ЕТСН	[
2.1	Arduino – Functions	1	2[10]	Lec	MCQ	2

2.2	Arduino – Strings	2	2[10]	РТ	Qui	2
2.3	Arduino – String Object	1	2[10]	GT	Ass	2
2.4	Arduino – Time	1	2[10]	TPS	Ass	2
2.5	Arduino – Arrays	2	2[10]	SI	SA	2
2.6	Arduino – I/O Functions	1	2[10]	BS	Qui	2
2.7	Arduino – Advanced I/O Function	1	2[10]	Lec	SA	2
2.8	Arduino – Character Functions	1	2[10]	TPS	Ass	2
2.9	Arduino – Math Library	1	2[10]	GT	MCQ	2
2.10	Arduino – Trigonometric Functions	1	2[10]	BS	Qui	2
III	ARDUINO COMMUNICATION					
3.1	Arduino Pulse Width Modulation	1	3[10]	Lec	Ass	2
3.2	Arduino Random Numbers	1	3[10]	BS	Qui	2
3.3	Arduino Interrupts	1	3[10]	TPS	Ass	2
3.4	Arduino Serial & Parallel Communication	1	3[15]	GD	Ass	2
3.5	Arduino Inter Integrated Circuit	1	3[10]	РТ	MCQ	2
3.6	Arduino Serial Peripheral Interface	1	3[15]	РТ	Qui	2
3.7	Arduino Tone Library	2	3[10]	00	Ass	2
3.8	Arduino Wireless Communication	2	3[10]	GT	Qui	2
3.9	Arduino Network Communication	2	3[10]	SI	SA	2
IV	INTERFACING SENSORS AND ACTUATORS					
4.1	Arduino Humidity Sensor	1	4[10]	Lec	Qui	2
4.2	Arduino Temperature Sensor	1	4[10]	SM	MCQ	2
4.3	Arduino Water Detector Sensor	1	4[10]	BS	Ass	2
4.4	Arduino PIR Sensor	1	4[10]	TPS	Ass	2
4.5	Arduino Ultrasonic Sensor	1	4[15]	GD	SA	2
4.6	Arduino Connecting Switch	1	4[10]	BS	SA	2
4.7	Arduino DC Motor – Speed & Direction	2	4[15]	РТ	Qui	2
4.8	Arduino Servo Motor	2	4[10]	GD	Ass	2
4.9	Arduino Stepper Motor	2	4[10]	TPS	SA	2
V	ARDUINO PROTOTYPING					
5.1	Arduino Blinking and Fading LED	1	5[10]	CL	Qui	2
5.2	Arduino Reading Analog Voltage	1	5[10]	EL	Ass	3
5.3	Arduino Measurement of Capacitance	1	5[10]	EL	Sem	3
5.4	Arduino Measurement of Light (lux meter)	1	5[10]	EL	Sem	3
5.5	Arduino Measurement of Pressure	1	5[10]	EL	SA	3
5.6	Arduino Traffic Light	1	5[5]	GT	MPr	4
5.7	Arduino Night Security Light	1	5[10]	00	MCQ	4
5.8	Arduino SONAR	2	5[10]	GD	Ess	4
5.9	Arduino Water Irrigation System	1	5[10]	TPS	MPr	4
5.10	Arduino Time Attendance System	1	5[10]	BS	Ess	4
5.11	Arduino Gas Leakage Detector	1	5[5]	GT	Ess	3

- 1. John Nussey, Arduino for Dummies 2nd Edition, John Wiley & Sons, Inc, New Jersey, 2018.
- 2. Turorialspoint.com, *Arduino.* Tutorials Point (I) Pvt. Ltd, Hyderabad, 2016.
- 3. Simone Bales, Arduino Measurement Projects for beginners, STEMedu, Brussels, 2020.
- 4. Rui Santos, *Arduino Arduino Projects– 2nd Edition*, Random Nerd Tutorials.com, Porto, 2020.
- 5. Simon Monk, *Programming Arduino Getting Started with Sketches*, Mc Graw Hill, New York, 2012.
- 6. Brian W. Evans, *Arduino Programming Notebook*, Creative Commons, San Francisco, 2008.

Course Title:	MATERIA	AL SCIENCE	Course Type: Theo				
				Course Code:	23PPN1		
Total Hours: 90		Hours/Week: 6)	Credits:	4		
Pass-Out Policy :							
Minimum Contact	Hours: 54						
Total Score %: 100)	Internal: 40		External: 60			
Minimum Pass %:	50 [No	[No Minimum for Internal]					
Course Creator:	Exp	<u>ert 1:</u>		Expert 2:			
Prof. A. Charles Hepzy Roy	Dr.	A. Hudson Olive	r	Dr. H. Adlin Mahiba	a		
Asso. Prof., Facult Head	y Ass	i. Prof. of Physics		Assi. Prof. of Physics	5		
+919944261881	+91	9952654515		+919486578077			
achroy66@gmail.c	com hud	lson2612@gmai	l.com	adlinemahiba1@g	mail.com		

CLO- No.	Course Learning Outcome Upon completion of this course, students will be able to:	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	Cognitive Level CL	nowledge Catogory KC
CLO- 1	Acquire knowledge on optoelectronic materials	3[10] 4[10]	1,2,3, 5,6,7, 9	R	F, C
CLO- 2	Be able to prepare ceramic materials	3[10] 4[10]	1,2,3, 5,6,7, 9	Ар	С, Р
CLO- 3	Be able to understand the processing and applications of polymeric materials	3[10] 4[10]	1,2,3, 5,6,7,	U Ap	Р
CLO- 4	Be aware of the fabrication of composite materials	3[10] 4[10]	1,2,3, 5,6,7,	E	Р, М

CLO- 5	Be knowledgeable alloys, metallic nanomaterials.	of	shape glasses	memory and	3[10] 4[10]	1,2,3, 5,6,7, 9	R	F, M
--------	--	----	------------------	---------------	----------------	-----------------------	---	------

Module	Course Description	Hours	% CLO Mapping with Module	Learning Activitie	Assessment Tasks	Reference							
I	OPTOELECTRONIC MATERIALS												
1.1	Importance of optical materials – properties	1	1[10]	Lec	SA	1							
1.2	Light interactions with solids	1	1[10]	Lec	SA	1							
1.3	Band structure, energy levels, Band gap and lattice matching	2	1[15]	GD	MCQ	1							
1.4	Optical Properties of materials - Absorption, reflection, transmission and other properties	2	1[15]	Lec	SA	1							
1.5	Optical processes in quantum structures	1	1[10]	GD	Ess	1							
1.6	Organic semiconductors	1	1[10]	Lec	Ess	1							
1.7	Light propagation in materials – Electro-optic effect and modulation	2	1[15]	Lec	Ess	1							
1.8	Optoelectronic Devices – LED, Photodiode, Solar cell	2	1[15]	Lec	SA	1							
II	CERAMIC MATERIA	LS											
2.1	Ceramic processing	1	2[15]	Lec	Ess	2,5							
2.2	Powder processing	2	2[15]	Lec	Ess	2,5							
2.3	Milling and sintering	2	2[15]	Lec	SA	2,5							
2.4	Traditional ceramics	1	2[10]	GD	MCQ	2,5							
2.5	Structural ceramics	1	2[10]	GD	SA	2,5							
2.6	Mechanical properties of ceramics	2	2[15]	GD	SA	2,5							
2.7	Refractories	1	2[10]	Lec	SA	2,5							
2.8	Glass and glass ceramics	2	2[10]	Lec	SA	2,5							
III	POLYMERIC MATERI	ALS	;										

3.1	Polymeric Materials – introduction and classification	1	3[10]	Lec	Ess	2,5						
3.2	Molecular structure of polymers	1	3[10]	Lec	Ess	2,5						
3.3	Polymerization techniques	1	3[10]	Lec	Ess	2,5						
3.4	Mechanical Properties of Polymers - Elasticity, viscosity, rheology, Thermal Stability and degradation	2	3[15]	GD	Ass	2,5						
3.5	Polymer Processing Techniques	2	3[10]	GD	SA	2,5						
3.6	Copolymers	1	3[10]	GD	SA	2,5						
3.7	Applications: conducting polymers	2	3[15]	Lec	Ass	2,5						
3.8	Biopolymers	1	3[10]	Lec	Ass	2,5						
3.9	High temperature polymers	1	3[10]	Lec	Ess	2,5						
IV	COMPOSITE MATERIALS											
4.1	Particle reinforced composites	1	4[15]	Lec	Sem	2,4						
4.2	Fiber reinforced composites	2	4[15]	Lec	Sem	2,4						
4.3	Mechanical behavior	1	4[10]	GD	Sem	2,4						
4.4	polymer matrix composites	2	4[15]	Lec	Ass	2,4						
4.5	metal matrix composites	2	4[15]	Lec	Ass	2,4						
4.6	Carbon/carbon composites	2	4[10]	Lec	SA	2,4						
4.7	Nanocomposites	1	4[10]	Lec	Sem	2,4						
4.8	Applications	1	4[10]	GD	Sem	2,4						
v	NEW MATERIALS	5										
5.1	Shape memory alloys	1	5[10]	Lec	Sem	3,4						
5.2	Mechanisms of one-way and two-way shape memory effect	1	5[10]	Lec	Ess	3,4						
5.3	Thermo-elasticity and pseudo-elasticity Examples and applications	2	5[15]	Lec	SA	3,4						

5.4	Superconducting materials and piezoelectric materials	1	5[10]	GD	MCQ	3,4
5.5	Amorphous Metals	2	5[10]	GD	Sem	3,4
5.6	Nanomaterials: classification	1	5[10]	Lec	Ass	3,4
5.7	Size effect on structural and functional properties	1	5[10]	Lec	Ass	3,4
5.8	Processing and properties of Nano crystalline materials	1	5[10]	GD	Sem	3,4
5.9	Materials of Importance—Biodegradable and Bio-renewable Polymers/Plastics	2	5[15]	Lec	Sem	3,4

- 1. Jasprit Singh, Electronic and optoelectronic properties of semiconductor structures, Cambridge University Press, 2007.
- 2. William D. Callister, David G. Rethwisch, Materials science and engineering : an introduction, 10th edition, John Wiley & Sons
- 3. William F. Smith, Javad Hashemi, 6th Edition, Foundations of Materials Science and Engineering, McGraw-Hill Education
- 4. V. Raghavan, 2003, Materials Science and Engineering, 4th Edition, Prentice- Hall India, New Delhi.
- 5. G.K. Narula, K.S. Narula and V.K. Gupta, 1988, Materials Science, Tata McGraw-Hill
- 6. <u>https://onlinecourses.nptel.ac.in/noc20_mm02/preview</u>
- 7. https://nptel.ac.in/courses/112104229
- 8. <u>https://archive.nptel.ac.in/courses/113/105/113105081</u>
- 9. https://nptel.ac.in/courses/113/105/113105025/
- 10. <u>https://eng.libretexts.org/Bookshelves/Materials Science/Supplemental</u> <u>Modules (Materials Science)/Electronic Properties/Lattice Vibrations</u>

SEMESTER III

Course Title: QUANT	UM MECHANICS	Course Type: Theory				
Course Code:						
Total Hours: 90	Hours/Week: 6	Credits: 4				
Pass-Out Policy :						
Minimum Contact Hour	rs: 54					
Total Score %: 100	Internal: 40	External: 60				
Minimum Pass %: 50	[No Minimum for Internal]					

Course Creator:	Expert 1:	Expert 2:
Prof. A. Charles Hepzy Roy	Dr. S. Sharmila Juliet	Dr. D.J. Jeejamol
Asso. Prof., Faculty Head	Assi. Prof. of Physics	Assi. Prof. of Physics
+919944261881	+919487094860	+917598629087
achroy66@gmail.com	sharmilabennet@gmail.com	lomajeej@gmail.com

CLO- No.	Course Learning Outcome Upon completion of this course, students will be able to:	PLO % MAPPED WITH CLO	LO & PLO MAPPED WITH GA	Cognitive Level CL	nowledge Catogory KC
CLO- 1	Know the background and the main features of quantum mechanics and discuss the uncertainty relation.	1[10] 2[10]	1,2,3, 6,8	R, U	C
CLO- 2	Gain understanding on historical importance of Bohr's model of the hydrogen atom, its strengths and weaknesses, and how it differs from the	1[10] 2[10]	1,2,3, 6,8	U, Ap	F
CLO- 3	Develop a knowledge and understanding of the role of angular momentum in atomic and nuclear physics;	1[10] 2[10]	1,2,3, 6,8	An	Р
CLO- 4	Expand knowledge and understanding of perturbation theory, level splitting, and radioactive transitions and Explain the Stark affect and spin orbit coupling.	1[10] 2[10]	1,2,3, 6,8	An, E	Р, М
CLO- 5	Use relativistic wave equations for the description of particles travelling at speeds close to that of light	1[10] 2[10]	1,2,3, 6,8	E, C	F, M

Module	Course Description	Hours	% CLO Mapping with Module	Learning Activitie	Assessment Tasks	Reference
Ι	GENERAL FORMALISM OF WAVE MECH	ANIC	5			
1.1	Inadequacy of classical mechanics	1	1[10]	Lec	SA	1
1.2	The Schrodinger equation and the	1	1[10]	Lec	Ess	1
	probability for N-particle system					
1.3	The fundamental postulates of wave	1	1[10]	Lec,	SA,	1
	mechanics			GD	Ess	
1.4	The adjoint of an operator and self	1	1[5]	Lec	SA,	1
	adjointness				Ess	
1.5	The Eigenvalue problem; degeneracy	1	1[5]	Lec	SA	1
1.6	Eigenvalues and Eigenfunction of self	1	1[5]	Lec	SA,	1
	adjoint operators.				Ess	
1.7	The dirac delta function	1	1[5]	Lec	SA	1
1.8	Observables; completeness and	1	1[10]	Lec	SA	1
	normalization of Eigenfunctions					
1.9	Closure property	1	1[10]	Lec,	Ess	1

				GD		
1.1	Physical interpretation of Eigenvalues,	1	1[10]	Lec	SA,	1
0	Eigenfunctions and expansion coefficient				Ess	
1.1	The uncertainty principle – statement and	1	1[10]	Lec,	Ess,	1
1	proof			GD	Sem	
1.1	Ehrenfest theorem	1	1[10]	Lec'	Ess,	1
2				GD	Sem	
II	EXACTLY SOLVABLE EIGENVALUE PROB	LEM	I			
2.1	Simple harmonic oscillator	1	2[10]	Lec	Pro	1
2.2	The Schrodinger equation and energy	1	2[10]	Lec	Ess,	1
	Eigenvalues				Ass	
2.3	The energy Eigenfunctions	1	2[5]	Lec	SA	1
2.4	Series solution – asymptotic behaviour	1	2[10]	Lec,	Ess	1
				GD		
2.5	Orthonormality	1	2[10]	Lec	Ess	1
2.6	Properties of stationary states	1	2[5]	Lec	SA	1
2.7	Hydrogen atom	1	2[10]	Lec	Pro	1
2.8	Solution of the radial equation	1	2[10]	Lec,	Ess,	1
				GD	Sem	
2.9	Angular part energy levels	1	2[5]	Lec,	Ess,	1
				GD	Sem	
2.10	Stationary state wave functions	1	2[10]	Lec	Ess	1
2.11	Discussion of bound states	1	2[5]	Lec	Ess	1
2.12	Square potential barrier	2	2[5]	Lec	Pro	1
2.13	Expressions for R and T	2	2[5]	Lec,	Ess,	1
				GD	Ass	
III	ANGULAR MOMENTUM					
3.1	The angular momentum operators	1	3[10]	Lec	SA	1
3.2	Angular momentum (L) in spherical co-	1	3[10]	Lec	SA	1
2.2	L ² in spherical co-ordinates	15	3[10]	РТ	SΔ	1
3.5	The Figenvalue equation for L ²	1.5	3[10]	Lec	Fee	1
3.4	Figenvalues and Figenfunctions	1.5	3[10]	Lec	Fee	1
3.5	Figenvalue spectrum of I	15	3[10]	Lec	Fee	1
3.0	Matrix representation of < Iin /im> hasis	1.5	3[10]	Lec	Pro	1
3.8	Pauli's spin matrices	1.5	3[10]	PT	SA SA	1
3.0	Addition of angular momentum	1	3[10]	Lec	Pro	1
3.10	CG Coefficients	1	3[10]	Lec	Pro	1
IV	PERTURBATION THEORY FOR TIME EV		ION PR	OBLEN	<u> </u>	1
4.1	Perturbation theory for discrete levels	1	4[10]	Lec	Ess	1
4.2	Perturbation solutions for Transition	1	4[10]	Lec	Ess	1
	amplitude		-[-,]			
4.3	Selection rules	1	4[10]	Lec	Ess	1
4.4	First order transitions: constant	1	4[10]	Lec	Ess	1
	perturbation – Transition probability		-[-~]			-
4.5	Second Order transitions: constant	1	4[5]	SI	Pro	1
_	perturbation, Rate of Transition		L - J		_	
4.6	Scattering of a particle by a potential	2	4[10]	Lec	Ess	1

4.7	The effect of an electric field on the 4.8 energy levels of an atom (Stark effect)	1.5	4[10]	SI	Pro	1
4.8	Interaction of an atom with electromagnetic radiation	0.5	4[5]	Lec	Ess	1
4.9	The dipole approximation	1	4[10]	PT	Ess	1
4.10	Selection rules; allowed and forbidden Transition	1	4[10]	Lec	Ess	1
4.11	The Einstein coefficients; spontaneous emission		4[10]	SI	Pro	1
V	RELATIVISTIC QUANTUM MECHANICS					
5.1	Generalization of the Schrödinger Equation - The Klein-Gordon Equation	1	5[10]	Lec	Ess	1, 2
5.2	Plane Wave Solutions; Charge and Current Densities	1	5[10]	Lec	Ess, Ass	1, 2
5.3	Interaction with Electromagnetic Fields; Hydrogen-like Atom	1	5[10]	Lec	Ess, Ass	1, 2
5.4	Nonrelativistic Limit	1	5[10]	Lec	Ess, Ass	1, 2
5.5	The Dirac Equation - Dirac"s Relativistic Hamiltonian	1	5[5]	Lec	SA,	1, 2
5.6	Position Probability Density; Expectation Values	2	5[10]	Lec, GD	SA, Pro	1, 2
5.7	Dirac Matrices	1	5[10]	Lec	Ess	1, 2
5.8	Plane Wave Solutions of the Dirac Equation; Energy Spectrum	2	5[10]	Lec	Ess	1, 2
5.9	The Spin of the Dirac Particle	1	5[10]	Lec	Ess	1, 2
5.10	Significance of Negative Energy States; Dirac Particle in Electromagnetic Fields	1	5[10]	Lec	Ess	1, 2
5.11	The Spin Orbit Energy	1	5[5]	Lec	Ess, Sem	1, 2

- 1. G. Aruldhas, A Text book of Quantum Mechanics, Prentice Hall of India Pvt., Ltd.,2002
- 2. Satya Prakash, Quantum Mechanics, Kedar Nath Ram Nath and Co. Publications, 2018.
- 3. P.M. Mathews and K. Venkatesan, A Text Book of Quantum Mechanics, Tata McGraw Hill Publications, Second edition, 2010.
- 4. A. K. Ghatak and Lokanathan, Quantum Mechanics, Theory and applications, Macmillan India Ltd Publication, Fifth Edition, 2015.
- 5. Leonard I. Schiff, Quantum Mechanics, McGraw-Hill International Publication, Third Edition, 1968.
- 6. V. K. Thankappan, Quantum Mechanics, New Age International (P) Ltd. Publication, Second Edition, 2003.

- 7. E. Merzbacher, Quantum Mechanics, John Wiley Interscience Publications, ThirdEdition, 2011.
- 8. Claude Cohen-Tannoudji, Bernard Diu, Franck Laloë, Quantum Mechanics (Vol.I) JohnWiley Interscience Publications, First Edition, 1991.
- 9. Pauling & Wilson, Quantum Mechanics, Dover Publications, New Edition, 1985.
- 10. R. Shankar, Principle of Quantum Mechanics, Plenum US Publication, SecondEdition, 1994.
- 11. L. Schiff, Quantum Mechanics, McGraw-Hill Book Co., New York, 1996.
- 12. S. Devarnathan, Quantum Mechanics, Narosa Publications (India) Pvt, Ltd., Chennai, 2004.
- 13. Kakani S.L and Chandalia H.M., Quantum Mechanics, Sultan Chand & Sons, New Delhi, 1994.
- 14. E. Merzbacher, Quantum Mechanics, Wiley International, New york, 1970.
- 15. V.K. Thankappan, Quantum Mechanics, Wiley-Eastern Ltd, 1993.

Course Title: ELECT	ROMAGNETIC THEORY	Course Type: Theory
		Course Code: 23PP32
Total Hours: 90	Hours/Week: 6	Credits: 4
Pass-Out Policy :		
Minimum Contact Hour	s: 54	
Total Score %: 100	Internal: 40	External: 60
Minimum Pass %: 50	[No Minimum for Internal]	
<u>Course Creator:</u>	Expert 1:	Expert 2:
Prof. A. Charles Hepzy Roy	Dr. Y. Premila Rachelin	Dr. H. Adlin Mahiba
Asso. Prof., Faculty Hea	Asso. Prof. of Physics	Assi. Prof. of Physics
+919944261881	+919489620591	+919486578077
achroy66@gmail.com	premilarachelin@gmail.com	adlinemahiba1@gmail.com

CLO- No.	Expected Course Learning Outcome Upon completion of this course, the students will be able to:	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	ogniti ve Level CL	nowled ge itogory KC
CLO - 1	Formulate potential problems within electrostatics, magnetostatics and stationary current distributions in linear, isotropic media etc.	1[10] 3[10]	1,2,3,5, 6,8	Ap	С
CLO - 2	Define and derive expressions for the energy both for the electrostatic and magnetostatic fields, and derive Poynting's theorem from Maxwell's equations and interpret the terms in the theorem physically.	1[10] 3[10]	1,2,3,5, 6,8	An	F
CLO - 3	describe, qualitatively, the effects of moving a conductor in an external magnetic field, in terms of moving charges in a magnetic field	1[10] 3[10]	1,2,3,5, 6,8	Ар	Р

CLO - 4	Describe and make calculations of plane electromagnetic waves in homogeneous media, including reflection of such waves in plane boundaries between homogeneous media.	1[10] 3[10]	1,2,3,5, 6,8	E	С, Р
CLO - 5	Understand charged particles and fluids interacting with self-consistent electric and magnetic fields.	1[10] 3[10]	1,2,3,5, 6,8	U	F, M

Module	Course Description	Hours	% CLO Mapping with Module	Learning Activitie	Assessment Tasks	Reference
Ι	ELECTROSTATICS					
1.1	Electric field – coulombs law	0.5	1[5]	BS	Quiz	1
1.2	Continuous charge distribution	0.5	1[5]	TPS	Ass.	1
1.3	Gauss – law – application	1	1[10]	Lec	Ess	1
1.4	Divergence of E, Curl of E	1	1[5]	BS	SA	1
1.5	Electric potentials, Poisson's, Laplace equation	1	1[5]	Lec	SA	1
1.6	Potential of a localized charge distribution	1	1[10]	Lec	Ess	1
1.7	Electrostatic boundary condition	1	1[5]	Lec	Ess	1
1.8	Work and energy in electrostatics	1	1[5]	РТ	SA	1
1.9	Energy – point charge, continuous charge	1	1[10]	TPS	SA	1
1.10	Laplace's equation – 2D – 3D	1	1[10]	Lec	Ess	1
1.11	Boundary condition. Uniqueness theorem	1	1[10]	Lec	Ess	1
1.12	Separation of variables – Cartesian – spherical	1	1[10]	Lec	Ess	1
1.13	Multipole expansion – monopole, dipole	1	1[10]	GT	Ess	1
II	MAGNETOSTATICS					
2.1	Magnetic field, magnetic force,	1	2[5]	GD	SA	1
2.2	Currents surface – volume, current density	1	2[5]	GT	Ass	1
2.3	Steady current – magnetic field of steady current	1	2[10]	Lec	SA	1
2.4	Divergence and Curl of B	1	2[10]	Lec	SA	1
2.5	Ampere's law – applications	2	2[10]	Lec	Ess	1
2.6	Comparison of electrostatics magneto statics	1	2[10]	GD	SA	1
2.7	Magnetic vector potential – spherical shell	2	2[20]	Lec	Ess	1
2.8	Effect of magnetic fields on atomic orbitals	1	2[10]	Lec	Ess	1

2.9	Ampere's Law in magnetized materials	1	2[10]	Lec	SA	1
2.10	Ferromagnetism.	1	2[10]	Lec	Ess	1
III	ELECTROMOTIVE FORCE					
3.1	Electromotive force – ohms law – motional emf	2	2[5]	GT	Quiz	1
3.2	Electromagnetic induction – Faraday's law	1	2[5]	GD	SA	1
3.3	Inductance – Neumann formula	1	2[10]	Lec	SA	1
3.4	Energy in magnetic field	1	2[10]	Lec	Ess	1
3.5	Maxwell's equation – Differential and integral form	1	2[10]	GD	Quiz	1
3.6	Maxwell's equation in matter	1	2[10]	Lec	Ess	1
3.7	Maxwell's equation in free space and linear isotrophic media	1	2[10]	Lec	Ess	1
3.8	Boundary conditions	1	2[10]	TPS	SA	1
3.9	Continuity equation – Poynting theorem	2	2[20]	Lec	Ess	1
3.10	Maxwell's stress tensor	1	2[10]	Lec	Ess	1
IV	ELECTROMAGNETIC WA	VE	S			
4.1	Waves in one dimension	1	4[10]	BS	Ass	1
4.2	Wave equation -Sinusoidal waves	1	4[5]	TPS	SA	1
4.3	Boundary condition, reflection and transmission	1.5	4[10]	Lec	Ess	1
4.4	Wave equation for E & B.	1	4[5]	GT	Quiz	1
4.5	Monochromatic plane wave	0.5	4[5]	GD	Ass	1
4.6	Energy and momentum in EM waves	1	4[10]	00	SA	1
4.7	Electromagnetic wave in matter	1	4[10]	Lec	Ess	1
4.8	Reflection, transmission, normal incidence	2	4[15]	Lec	Ess	1
4.9	Electromagnetic waves in conductors	1	4[10]	Lec	Ess	1
4.10	Reflection at a conducting surface	1	4[10]	GD	Ess	1
4.11	Wave guides, TE, TM, TEM, rectangular wave guides	1	4[10]	TPS	Ess	1
V	APPLICATION OF ELECTROMAGN	ET	IC WAY	/ES		1
5.1	Boundary conditions at the surface of discontinuity	1	4[10]	Lec	SA	1
5.2	Reflection and refraction of E.M waves at the interface of non – Conducting media	2	4[15]	Lec	Ess	1

5.3	Kinematic and dynamic properties	1	4[10]	GD	Sem	1
5.4	Oblique incidence-Fresnel's equation	1	4[15]	Lec	Ess	1
5.5	Electric field vector 'E' parallel to the plane of incidence and perpendicular to the plane of	2	4[10]	Lec	Ess	1
5.6	Reflection and transmission co-efficients at the interface between two non–Conducting media –	2	4[15]	Lec	Ess	1
5.7	Brewster's law and degree of polarization	2	4[10]	Lec	SA	1
5.8	Total internal reflection.	1	4[15]	BS	Ess	1

- 1. David. J. Griffiths, Introduction to Electrodynamics (Third Edition), Prentice Hall of India Edition, 2000.
- 2. B.S. Saxena, P.N. Saxena & R.C. Gupta, Fundamentals of Solid State Physics, Pragathi Prakasan Publication, 1978.
- 3. John David Jackson, Classical Electrodynamics, Third Edition John Wiley publications, 1999.
- 4. John R. Reitz, Frederick J. Millford, Robert W. Christy, Foundations of Electromagnetic Theory, Third Edition, Narosa publication house, 1988.

Course Title:	MOLEC	ULAR SPECTROSCOPY	Course Type: Theory
			Course Code: 23PP33
Total Hours: 9	0	Hours/Week: 5	Credits: 4
Pass-Out Policy	7:		
Minimum Cont	act Hour	s: 54	
Total Score %:	100	Internal: 40	External: 60
Minimum Pass	%: 50	[No Minimum for Internal]
Course Creato	<u>r:</u>	Expert 1:	Expert 2:
Prof. A. Charle	es	Dr. C. Boslay Joh	Dr. V. Chasha Sharlin
Hepzy Roy		DI. C. Besky Job	DI. 1. Sheeda Sherini
Asso. Prof., Fac Head	culty	Asso. Prof. of Physics	Asso. Prof. of Physics
+9199442618	81	+919487026024	+919442304397
achroy66@gma	ail.com	cbjob1969@gmail.com	ysheebamohan@gmail.com

CLO - No.	Course Learning Outcome Upon completion of this course, students will be able to:	PLO % MAPPED WITH CLO	LO & PLO MAPPED WITH GA	Cognitive Level CL	Knowledge Catogory KC
CLO- 1	Acquired knowledge and insight into the interaction of light with matter and the different optical responses	4[10] 9[10]	1,2,6, 7,8,9	R, U	С

CLO- 2	Developed skills to interpret spectroscopic measurements and apply this information to clarify molecular structure and properties.	4[10] 9[10]	1,2,6, 7,8,9	U, Ap	F
CLO- 3	Understood molecular interactions in Raman spectroscopic methods	4[10] 9[10]	1,2,6, 7,8,9	An	Р
CLO- 4	Attained knowledge to spectrometers by NMR and ESR theories	4[10] 9[10]	1,2,6, 7,8,9	An, E	М
CLO- 5	Learned advanced surface spectroscopies (EELS, RAIRS, SERS, XPES, PES, and AES)	4[10] 9[10]	1,2,6, 7,8,9	E, C	Р, М

Module	Course Description	Hours	% CLO Mapping with Module	Learning Activitie	Assessment Tasks	Reference
Ι	INTRODUCTION AND MICROWAVE SPECTROSCO	PY	1			
1.1	Characterisation of electromagnetic radiation	1	1[5]	Lec	Qui	1
1.2	Quantization of energy	1	1[5]	Lec	Qui	1
1.3	Regions of spectrum	1	1[5]	GD	Qui	1
1.4	Fourier Transform Spectroscopy	1	1[10]	Lec	Ess	1
1.5	Classification of molecules	1	1[10]	GD	Qui	1
1.6	Rotational Spectra of rigid diatomic molecules	1	1[10]	Lec	Ess	1
1.7	Intensity of spectral lines	1	1[10]	Lec	SA	1
1.8	The spectrum of non- rigid rotator	1	1[10]	Lec	Ess	1
1.9	Rotational Spectra of polyatomic molecules	1	1[10]	Lec	Ess	1
1.10	Microwave Spectrometer	1	1[10]	Lec	SA	1
1.11	Chemical Analysis by microwave spectroscopy	1	1[10]	Lec	SA	1
1.12	Microwave oven	1	1[5]	00	Qui	1
II	INFRARED SPECTROSCOPY	r	1			1
2.1	Introduction	0.5	2[5]	GD	Qui	1
2.2	Simple harmonic osillator	1	2[5]	GD	SA	1
2.3	Anharmonic oscillator	1	2[5]	PT	SA	1
2.4	Diatomic vibrating rotator	1	2[10]	Lec	Ess	1

2.5	Fundamental vibrations and their symmetry	1	2[10]	Lec	SA	2
2.6	Influence of rotation on the spectra of polyatomic molecules	1	2[10]	Lec	Ess	1
2.7	Group Frequencies	1	2[5]	GD	Qui	2
2.8	Techniques and instrumentation	1	2[10]	Lec	SA	1
2.9	Pressed pellet technique, mull technique and ATR	1	2[10]	Lec	Ess	1
2.10	IR spectrum – Interpretation of organic compounds	1	2[10]	Lec	Ess	2
2.11	Finger print region	0.5	2[5]	Lec	SA	2
2.12	Carbon dioxide laser	1	2[5]	Lec	Qui	2
2.13	Factors affecting IR & RAMAN	1	2[10]	GD	SA	1
III	RAMAN SPECTROSCOPY			,		
3.1	Classical theory of Raman scattering	1	3[10]	Lec	SA	1
3.2	Quantum theory of Raman scattering	1	3[5]	GD	SA	1
3.3	Pure rotational Raman spectra	1	3[10]	Lec	Ess	1
3.4	Raman activity of vibrations	1	3[5]	Lec	Ess	1
3.5	Mutual exclusion principle	0.5	3[10]	00	SA	1
3.6	Overtones and combination vibrations	0.5	3[5]	Lec	SA	1
3.7	Vibrational Raman spectra	1	3[10]	Lec	SA	1
3.8	Rotational fine structure	1	3[5]	Lec	Ess	1
3.9	Polarization of light and the Raman effect	1	3[10]	Lec	SA	1
3.10	Structure determination from Raman and IR spectroscopy	1	3[10]	Lec	Ess	1
3.11	Techniques and instrumentation	1	3[10]	РТ	Ess	1
3.12	Near Infra-Red FT-Raman Spectroscopy	1	3[10]	00	SA	1
3.13	Fermi Resonance	1	3[5]	Lec	Ess	1
IV	NMR AND ESR SPECTROSCOPY					

4.1	Introduction to NMR	0.5	4[10]	GD	MCQ	2
4.2	Resonance Condition	0.5	4[10]	Lec	SA	2
4.3	Width of absorption lines in NMR	1	4[10]	Lec	SA	2
4.4	Chemical Shift	1	4[10]	Lec	SA	2
4.5	Factors Influencing Chemical Shift	1	4[10]	РТ	Ess	2
4.6	Coupling Constants	0.5	4[10]	Lec	SA	2
4.7	NMR Instrumentation	1	4[10]	Lec	SA	2
4.8	Limitations of NMR	0.5	4[10]	Lec	Ess	2
4.9	Theory of ESR	1	4[10]	GD	SA	2
4.10	ESR Instrumentation	1	4[10]	РТ	Ess	2
4.11	Hyperfine splitting of ESR	1	4[10]	Lec	Ess	2
4.12	Determination of g-value	1	4[10]	GD	SA	2
4.13	General applications	1	4[10]	Lec	SA	2
4.14	NMR Imaging	1	4[10]	Lec	SA	2
V	SURFACE ANALYTICAL TOOLS					
5.1	Atomic Absorption spectroscopy – principles and Grotrian diagram	1	5[10]	GD	Ess	2
5.2	Advantages and disadvantages of AAS	1	5[5]	Lec	Sem	2
5.3	Applications of AAS	1	5[5]	Lec	Sem	2
5.4	Singlet and Triplet states and exited state process in fluorimetry	1	5[5]	Lec	Ess	2
5.5	Applications of Photoluminescnce	1	5[5]	РТ	Sem	2
5.6	Photo electron Spectroscopy (PES)	1	5[10]	GD	Ess	2
5.8	Scanning Electron Microscope (SEM)	1	5[10]	РТ	Sem	1
5.9	Reflection – Absorption IR Spectroscopy (RAIRS)	1	5[10]	GD	Ess	1
5.10	Surface enhanced Raman scattering (SERS)	1	5[10]	РТ	Ess	1

5.11	Auger electron spectroscopy (AES)	1	5[10]	Lec	SA	1
5.12	X-ray Fluorescence spectroscopy (XRF)	1	5[10]	GD	SA	1
5.13	Transmission Electron Microscope (TEM)	1	5[10]	Lec	SA	

- 1. Colin N. Banwell and Elaine M. McCash, Fundamentals of Molecular Spectroscopy IV Ed., Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2016.
- 2. G. Aruldhas, Molecular Structure and Spectroscopy 2nd Ed., PHI Learning (P) Ltd., New Delhi, 2008.
- 3. Robert M. Silverstein, Francis X. Webster, Spectrometric Identification of Organic Compounds VI Ed., John Wiley & Sons, Inc., New York, 2003.
- 4. A.K. Chandra, Introductory Quantum Chemistry, Tata McGraw Hill, New Delhi, 2006.
- 5. Ferraro, J. R., Nakamoto, K. & Brown, C. W., (2005). Introduction to Raman Spectroscopy, (2nd ed.), New Delhi: Elsevier India Pvt Ltd. Print.
- 6. N.B. Clothup; L.H. Daly; S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, 1990, third edition.
- 7. Y.R. Sharma, "Elementary Organic Spectroscopy", S. Chand Company & Ltd., New Delhi (2009).
- 8. Antonin Blazek, "Thermal Analysis", Van Nostrand Reinhold Company Ltd., Bucingham Gate, London, (1972).

Course Title:	ARDUINO	HARDWARE & PROGRAMMING	Course Type: Practical III
			Course Code: 23PPP3
Total Hours: 9	0	Hours/Week: 6	Credits: 4
Pass-Out Polic	y:		
Minimum Con	tact Hours	s: 54	
Total Score %:	100	Internal: 40	External: 60
Minimum Pass	s %: 50	[No Minimum for Internal]	
Course Create	<u>or:</u>	Expert 1:	Expert 2:
Prof. A. Charles Roy	s Hepzy	Dr. C. James	Dr. S. Sharmila Juliet
Asso. Prof., F Head	aculty	Asso. Prof. of Physics	Assi. Prof. of Physics
+919944261881		+919489500237	+919487094860
achroy66@gm	<u>ail.com</u>	james@scottchristian.org	sharmilabennet@gmail.com

CLO- No.	Course Learning Outcome Upon completion of this course, students will be able to:	PLO % MAPPED WITH CLO	LO & PLO MAPPED WITH GA	Cognitive Level CL	Knowledge Catogory KC
-------------	---	-----------------------------	-------------------------------	--------------------------	-----------------------------

CLO- 1	Learn the Arduino platform and programming language to create robots, interactive art displays, electronic toys, home automation tools, and much more. This course was created in collaboration with Hackster.	6[10] 10[10]	2,5,10	R, U	Р
CLO- 2	Learn to program in Arduino (C/C++) and build electronics that sense and react to the environment	6[10] 10[10]	2,5,10	U, Ap	Р
CLO- 3	Remotely log data to an Internet of Things (IoT) platform	6[10] 10[10]	2,5,10	An	Р
CLO- 4	Use the Internet to control your Arduino from anywhere in the world	6[10] 10[10]	2,5,10	An, E	Р
CLO- 5	Master the skills needed to bring your projects to life through electronics.	6[10] 10[10]	2,5,10	E, C	Р, М

Any six from the following list of experiments with at least one from each group

Group	Experiments							
1	Measurements:							
	1. Monitor and display analog voltage from devices such as							
	potentiometer or sensors.							
	2. Flash an LED to indicate a low voltage level (falls below a threshold).							
	3. Measure capacitance of a capacitor and display the result in a serial							
	monitor through serial port.							
	4. Using an ultrasonic distance sensor (HC-SR04), measure the distance							
	of an object and also display the distance on the Serial Monitor and							
	flash an LED faster as objects get closer.							
	5. Display the temperature or switch on an LED when the temperature							
	reaches a threshold.							
	6. Develop a Lux meter to measure the brightness of the light falling on							
	the sensor.							
	7. Forecast the weather by measuring both atmospheric pressure and							
	temperature.							
2	Sensors:							
	8. Detect if an object is moved, tilted, or shaken: Switch on one LED							
	when the tilt sensor is tilted one way, and other LED when it is tilted							
	the other way.							
	9. Detect a change when something passes in front of a light detector or							
	measure the light level.							
	10. Using a motion sensor such as a Passive Infrared (PIR) sensor,							
	detect the change values on a digital pin or switch on an LED when							

	someone moves nearby.
	11. Using Piezo sensor (knock sensor), switch on an LED when there is
	a vibration or someone knocks a door or an object.
	12. Forecast weather by Temperature and Humidity Measurement
	using DHT11 Sensor.
3	Actuators:
	13. Turn the brushed motor on and off and controls its speed by
	commands passed on the serial port.
	14. Control the direction of a brushed motor with an H-Bridge to rotate
	in one direction or the other from serial port commands.
	15. Control the direction and speed of brushed motors with feedback
	from photo sensors. 16. Rotate bipolar (four-wire) stepper motor
	under program control using an H-Bridge. A numeric value followed by
	a + steps in one direction; a - steps in the other.
	17. Play audio tones through a speaker or other audio transducer with
	the frequency set by a variable resistor (or other sensor) connected to
	analog input.
	18. Using tone function play a string of sounds corresponding to notes
	on a musical instrument.
4	Prototypes:
	19. Display your name and register number in a LCD based on the
	industry- standard HD44780 or similar one.
	20. Determine the duration of a pulse with microsecond accuracy; OR
	measure the exact time between two button presses.
	21. Display heart beating (small and large) in an 8×8 dot matrix with
	MAX7219.
	22. Build a traffic lights system for a junction. Use LEDs of colours
	Green, Red and Yellow and blink before changing.
	23. Control an LED brightness using a potentiometer and display the
	LED brightness on the LCD screen using a progress bar.
	24. Parking sensor: Measure the distance and an LED bar graph that
	lights up accordingly to the distance from the sensor. Getting closer to
	the sensor must be alerted with a buzzer beeps in a different way.
	25. Build a MQ-2 Gas/Smoke detector that beeps when it detects
	flammable gas or smoke. 26. Night security light with a relay module, a
	photo-resistor, which turns on when it is dark and when movement is
	detected.

Course Title:	ELECTRONIC DEVICES & CIRCUITS	Course Type: Theory
		Course Code: 23PPED

Total Hours: 75	Hours/Week: 5	Credits: 4
Pass-Out Policy :		
Minimum Contact Hours: 45	5	
Total Score %: 100	Internal: 40	External: 60
Minimum Pass %: 50 [N	o Minimum for Internal]	
Course Creator:	<u>Expert 1:</u>	Expert 2:
Prof. A. Charles Hepzy Roy	Dr. D. Hudson Oliver	Dr. S. Sharmila Juliet
Asso. Prof., Faculty Head	Assi. Prof. of Physics	Assi. Prof. of Physics
+919944261881	+919952654515	+919487094860
achroy66@gmail.com	hudson2612@gmail.com	sharmilabennet@gmail.com

CLO No.	Expected Course Learning Outcome Upon completion of this course, the students will be able to:	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	Cognitive Level CL	Knowledge Catogory KC
CLO- 1	Comprehend the operational principles of semiconductor devices.	5[10] 6[10]	1,2,5, 6,10	U, Ap	C, F
CLO- 2	Examine the functionality of optoelectronic devices and their underlying mechanisms.	5[10] 6[10]	1,2,5, 6,10	R, E	F, P
CLO- 3	Utilize fundamental principles to investigate the operation of photodetectors.	5[10] 6[10]	1,2,5, 6,10	Ap, C	Р
CLO- 4	Employ operational amplifiers for diverse applications and functionalities.	5[10] 6[10]	1,2,5, 6,10	U, Ap, C	Р, М
CLO- 5	Perform experiments involving transducers, and proficiently manage the Asso.d signals.	5[10] 6[10]	1,2,5, 6,10	U Ap, An	М

Module	Course Description		% CLO Mapping witł Module	Learning Activitie	Assessment Tasks	Reference
Ι	ABSTRACT GROUP THEORY					
1.1	Diodes – Modes of operation	1	1[10]	Lec	SA	1
1.2	DC analysis – AC small signal analysis	2	1[8]	Lec	Ess	1
1.3	Reverse breakdown model	1	1[8]	РТ	SA	1
1.4	Transistors – Transistor characteristics				SA,	
		1	1[8]	Lec	MC	1
					Q	
1.5	DC biasing – modes of operation	1	1[8]	PT	SA	1
1.6	DC analysis	1	1[10]	EL	SA	1
1.7	AC analysis	1	1[8]	EL	Ess	1
1.8	Field effect transistors	1	1[8]	Lec	SA,	1
1.9	DC analysis	1	1[7]	Lec	SA	1
1.10	AC analysis	1	1[9]	Lec	Ess	1

SCC-Phy-PG-2023

1.11	Silicon controlled rectifiers		4 [0]	DI.	Mpr	4		
			1[8]	EL	0	1		
1.12	DIAC-Characteristics	1	1[8]	EL	Ess	1		
1.13	TRIAC – Characteristics	1	1[10]	EL	Ess	1		
II	OPTOELECTRONIC DEVICES							
2.1	Light emitting diodes	1	2[7]	GD	SA	2,3		
2.2	Device configuration and efficiency	2	2[8]	Lec	Ess	2,3		
2.3	Extraction efficiency and external	1	2[8]	GD	Ess	2,3		
24	Hotoro junction LED	0						
2.4		5	2[8]	Lec	Ess	2,3		
2.5	Spectral response – LEDs for display				SA.			
	applications	1	2[7]	BS	MC Q	2,3		
2.6	Lasers: Einstein relation for population inversion	1	2[8]	Lec	Ess	2,3		
2.7	Threshold condition for lasing	1	2[7]	Lec	SA	2,3		
2.8	Applications of semiconductor lasers	1	2[8]	GD	MC Q	2,3		
2.9	Hetero junction lasers	0.	2[8]	Log	Fac	22		
		5	2[0]	Lec	E35	2,3		
2.10	Quantum well lasers-Device fabrication	1	2[8]	Lec	SA	2,3		
2.11	Measurement of Laser characteristics	1	2[8]	EL	SA	2,3		
2.12	Solar cells – spectral response	0. 5	2[7]	Lec	Ess	2,3		
2.13	solar cell design	0. 5	2[8]	Lec	SA	2,3		
III	PHOTO DETECTORS					1		
3.1	AC and DC photoconductors	1	3[9]	Lec	MC Q	2,3		
3.2	Gain and bandwidth	1	3[9]	GD	SA	2,3		
3.3	Measurement of multiplication factor	1	3[9]	Lec	Ess	2,3		
3.4	Noise performance	1	3[9]	GT	SA	2,3		
3.5	Avalanche photodiode	1	3[10]	Lec	Ess	2,3		
3.6	Impulse response measurement	1	3[9]	Lec	SA	2,3		
3.7	Photo transistors	1	3[9]	GD	Ess	2,3		
3.8	Metal semiconductor photodiodes	1	3[9]	Lec	Ess	2,3		
3.9	Metal semiconductor metal photo diode	1	3[9]	Lec	Ess	2,3		
3.10	Wavelength selection	2	3[9]	GD	SA	2,3		
3.11	Coherent detection	1	3[9]	Lec	Ass	2,3		
IV	IV OPERATIONAL AMPLIFIERS							
4.1	Op-amp characteristics, equivalent circuit	1	4[7]	GD	SA	4		
4.2	Open loop configuration – inverting, Non- inverting	1	4[8]	РТ	SA	4		
4.3	Practical op-amp input offset voltage, CMRR	1	4[8]	РТ	SA	4		
4.4	total output offset voltage	1	4[8]	EL	Ess	4		
4.5	Input bias current, input offset current	1	4[7]	EL	Ess	4		

Op-amp with negative feed back	1	4[8]	EL	Ess	4
Adder, subtractor, multiplier		4[7]	Lec	Ess	4
Integrator, Differentiator	1	4[8]	Lec	Ess	4
Analog computation	1	4[8]	EL	Ess	4
Oscillator – principle – types phase shift	1	4[8]	CD	SA,E	1
	I	4[0]	GD	SS	4
LC tunable oscillator	1	4[8]	EL	Ess	4
Nonlinear Oscillator Square, Triangular	1	4[7]	EL	Ess	4
EXPERIMENTAL TECHNIQUES					
Transducers – characteristics	1	5[11]	Lec	SA,	5
Temperature, pressure, piezoelectric	2	5[11]	GD	Ess	5
Capacitance	1	5[11]	Lec	SA	5
Low temperature – thermometry	1	5[9]	Lec	Ess	5
Thermal detectors – photoconductive	2	5[0]	рт	SA,E	E
		2[7]	ΓI	SS	5
Signal to noise	1	5[9]	РТ	SA	5
Fourier analysis	1	5[15]	Lec	Ess	5
Sources of noise	1	5[15]	GD	SA,	5
Signal to noise and experimental design	2	5[10]	Lec	Ess	5
	Op-amp with negative feed backAdder, subtractor, multiplierIntegrator, DifferentiatorAnalog computationOscillator – principle – types phase shiftLC tunable oscillatorNonlinear Oscillator Square, TriangularEXPERIMENTAL TECHNIQUESTransducers – characteristicsTemperature, pressure, piezoelectricCapacitanceLow temperature – thermometryThermal detectors – photoconductiveSignal to noiseFourier analysisSources of noiseSignal to noise and experimental design	Op-amp with negative feed back1Adder, subtractor, multiplier1Integrator, Differentiator1Analog computation1Oscillator – principle – types phase shift1LC tunable oscillator1Nonlinear Oscillator Square, Triangular1EXPERIMENTAL TECHNIQUES1Transducers – characteristics1Temperature, pressure, piezoelectric2Capacitance1Low temperature – thermometry1Thermal detectors – photoconductive2Signal to noise1Sources of noise1Signal to noise and experimental design2	Op-amp with negative feed back1 $4[8]$ Adder, subtractor, multiplier1 $4[7]$ Integrator, Differentiator1 $4[8]$ Analog computation1 $4[8]$ Oscillator – principle – types phase shift1 $4[8]$ LC tunable oscillator1 $4[8]$ Nonlinear Oscillator Square, Triangular1 $4[7]$ EXPERIMENTAL TECHNIQUES Transducers – characteristics1 $5[11]$ Temperature, pressure, piezoelectric2 $5[11]$ Low temperature – thermometry1 $5[9]$ Thermal detectors – photoconductive2 $5[9]$ Signal to noise1 $5[15]$ Sources of noise1 $5[15]$ Signal to noise and experimental design2 $5[10]$	Op-amp with negative feed back1 $4[8]$ ELAdder, subtractor, multiplier1 $4[7]$ LecIntegrator, Differentiator1 $4[8]$ LecAnalog computation1 $4[8]$ ELOscillator – principle – types phase shift1 $4[8]$ GDLC tunable oscillator1 $4[8]$ ELNonlinear Oscillator Square, Triangular1 $4[7]$ ELEXPERIMENTAL TECHNIQUES1 $5[11]$ LecTransducers – characteristics1 $5[11]$ LecCapacitance1 $5[11]$ LecLow temperature – thermometry1 $5[9]$ PTSignal to noise1 $5[15]$ LecSources of noise1 $5[15]$ GDSignal to noise and experimental design2 $5[10]$ Lec	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

- 1. Mathew M. Radmanesh, Radiofrequency and Microwave Electronics Illustrated, Addison-Wesley Longman Pvt., Ltd, Singapore, 2001.
- 2. S.M. Sze, Physics of Semiconductor Devices, Second Edition, John Wiley & Sons, New York, 2004.
- 3. Pallab Bhattacharya, Semiconductor Optoelectronic Devices, Eastern Economic Edition, Second Edition, Prentice-Hall of India Pvt., Ltd, New Delhi, 2002.
- 4. Tobey-Graeme-Huelsman, Operational Amplifiers Design and Application, McGraw-Hill Book Company, New Delhi, 1981.
- 5. Ian Sinclair, Sensors and Transducers, Elsevier, Amsterdam, 2000
- 6. John D, Ryder, Electronic Fundamentals and Applications, Fifth Edition, Eastern Economy Edition, Prentice-Hall of India Pvt., Ltd, New Delhi, 2003.
- 7. Jacob Millman, Chrostor C. Halkias, Electronic Devices and Circuits, McGraw Hill International Edition, Singapore, 1988.
- 8. M.S. Tyagi, Introduction to Semiconductor Materials and Devices, John Wiley & Sons, New York, 1991.

SEMESTER IV

Course Title:	SOLID STATE	PHYSICS – II	Course Type: Theory		
			Course Code: 23PP41		
Total Hours: 90		Hours/Week: 6	Credits: 4		
Pass-Out Poli	cy :				
Minimum Cor	ntact Hours: 54				
Total Score %: Internal: 40 External: 60					
Minimum Pas	s %: 50 [No M	Ainimum for Internal]			
Course Creat	<u>or:</u>	Expert 1:	Expert 2:		
Prof. A. Charles Hepzy Roy		Dr. C. Besky Job	Dr. Y. Sheeba Sherlin		
Asso. Prof., Fa	aculty Head	Asso. Prof. of Physics	Asso. Prof.of Physics		
+9199442618	381	+919487026024	+919442304397		

achroy66@gmail.com cbjob1969@gmail.com gmail.com
--

CLO No.	Expected Course Learning Outcome Upon completion of this course, students will be able to:	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	Cognitive Level CL	Knowledge Catogory KC
CLO- 1	Recognize material properties of matter with necessary theory and Understand the theory of free electron Fermi gas and the Asso.d heat capacity, thermal and electrical conductivity	2[10] 7[10]	1,2,3	R, U	С
CLO- 2	Explain the energy bands and gaps with theoretical background	2[10] 7[10]	1,2,3	U, Ap	F
CLO- 3	Elucidate the conduction phenomena in crystals and their career concentration	2[10] 7[10]	1,2,3	An	F, P
CLO- 4	Explain the concept behind semiconducting materials	2[10] 7[10]	1,2,3	An, E	М
CLO-5	Explain the concept behind superconducting materials	2[10] 7[10]	1,2,3	E, C	Р, М

Module	Course Description	Hours	% CLO Mapping with Module	Learning Activitie	Assessment Tasks	Reference
Ι	FREE ELECTRON FERMI GAS	•				
1.1	Energy levels in one dimension	1	1[5]	Lec	Ess	1
1.2	Free electron gas in 3D	1	1[10]	Lec	Ess	1
1.3	Heat capacity in 3D	1	1[10]	Lec	SA	1
1.4	Heat capacity of the electron gas	1	1[5]	Lec	SA	1
1.5	Experimental heat capacity of metals	1	1[10]	Lec	Ess	1
1.6	Electrical conductivity and ohms law	1	1[5]	Lec	MCQ	1
1.7	Experimental electrical resistivity of metals	1	1[10]	Lec	SA	1
1.8	Umklapp scattering	1	1[5]	TPS	SA	1
1.9	Motion in magnetic fields	1	1[10]	Lec	Ess	1
1.10	Thermal conductivity of metals	1	1[10]	GD	SA	1
	66	S	CC-Phy-	PG-202	.3	

1.11	Ratio of thermal to electrical conductivity	1	1[10]	CL	SA	1
1.12	Nanostructures	1	1[10]	CL	Ass	1
II	ENERGY BANDS		I		I	
2.1	Nearly free electron model	0.5	2[10]	Lec	SA	1
2.2	Origin of energy gap	0.5	2[5]	Lec	SA	1
2.3	Magnitude of the energy gap	1	2[5]	Lec	Ess	1
2.4	Bloch function `	0.5	2[5]	Lec	SA	1
2.5	Kronig Penney model	0.5	210]	BS	Ess	1
2.6	Wave equation in a periodic potential	1	2[5]	Lec	Ess	1
2.7	Crystal momentum of an electron	1	2[5]	Lec	SA	1
2.8	Solution of the central equation	1	2[5]	Lec	Ess	1
2.9	Number of orbitals in a band	1	2[10]	Lec	Ess	1
2.10	Metals and insulators	0.5	2[10]	Lec	SA	1
2.11	Fermi surface construction	0.5	2[5]	Lec	Ess	1
2.12	Electrons orbits, hole orbits and open orbits	1	2[10]	BS	Ess	1
2.13	Calculation of energy bands	1	2[5]	BS	Ess	1
2.14	Wigner-Seitz method	1	2[5]	BS	Ess	1
2.15	DeHass- van alpha effects	1	2[5]	BS	Ess	1
III	SEMICONDUCTOR CRYSTALS					
3.1	Properties and application of semiconductors	1	3[10]	Lec	SA	3
3.2	Effective mass	1	3[5]	Lec	SA	1
3.3	Physical interpretation of the effective mass of an electron	1	3[10]	Lec	Ess	1
3.4	Effective mass in semiconductor	1	3[10]	Lec	SA	1
3.5	Intrinsic carrier concentration	1	3[10]	Lec	Ess	1
3.6	Carrier concentration in n-type semiconductors	1	3[10]	Lec	SA	3
3.7	Carrier concentration in p-type semiconductors	1	3[10]	Lec	MCQ	3
3.8	Hall effect – determination of Hall co- efficient	1	3[10]	TPS	Ess	3
3.9	P-N Junction	1	3[5]	TPS	SA	1
3.10	Rectification	1	3[5]	Lec	SA	1
3.11	Energy in Si and Ge	1	3[5]	Lec	Ess	1

SCC-Phy-PG-2023

3.12	Electron-phonon interaction: polarons	1	3[10]	BS	Ess	1
IV	SUPERCONDUCTIVITY					
4.1	Experimental survey, Occurrence of superconductivity	1	4[5]	GD	MCQ	2
4.2	Meissner effect, heat capacity, energy gap	1	4[10]	Lec	SA	2
4.3	Microwave and infrared property, isotope effect	1	4[10]	Lec	SA	2
4.4	London equations	1	4[10]	Lec	Ess	2
4.5	BCS theory of super conductor	1	4[10]	Lec	Ess	2
4.6	Type I superconductor	1.5	4[10]	Lec	Ess	2
4.7	Type II superconductor	1.5	4[10]	Lec	SA	2
4.8	Applications of Super Conductors	1	4[5]	Lec	SA	2
4.9	High Tc Super Conductors	1	4[10]	Lec, GD	Ess, MCQ	2
4.10	AC Josephson effect	1	4[10]	Lec	Ess	2
4.11	DC Josephson effect	1	4[10]	Lec	Ess	2
V	DIA, PARA AND FERROMAGNETISM					
5.1	Susceptibility, diamagnetism	1	5[10]	Lec	MCQ	2
5.2	Langevin diamagnetic equation	1	5[5]	Lec	Ess	2
5.3	Langevin Paramagnetic equation	1	5[5]	Lec	Ess	2
5.4	Quantum theory of paramagnetism	1	5[10]	Lec	Ess	2
5.5	Paramagnetic susceptibility of conduction electrons	2	5[10]	Lec	Ess	2
5.6	Ferromagnetic order, curie point and exchange integral	1	5[10]	Lec	SA	2
5.7	Properties and applications of Hard magnetic Materials	1	5[10]	Lec	Ess	3
5.8	Alnico alloys, NdFeB magnets, SMCo magnets and hard ferrites	1	5[10]	Lec, GD	Ess, SA	3
5.9	Properties and applications of soft magnetic materials	1	5[10]	Lec	SA	3
5.10	Iron silicon alloys, permalloy	1	5[10]	Lec, FW	Ess, MCQ	3
5.11	Ferrites, Garnets, Amorphous magnets.	1	5[10]	Lec, FW	Ess, MCQ	3

- 1. Charles Kittel, Introduction to Solid State Physics, Wiley Eastern P. Ltd, Seventh Edition, 2000
- 2. Solid State Physics, Bhima Shankaran, BS Publications, Hyderabad, 2002.
- 3. Solid State Physics, Dr. K.Ilangovan, MJP Publishers, Chennai, 2013.
- 4. S.O Pillai, Solid State Physics, Wiley Eastern Ltd., 1994
- 5. M. Arumugam, Solid State Physics, Anuradha Agencies, 2004
- 6. J.P Srivastava, Elements of Solid State Physics, Prentice Hall of India, New Delhi, 2004.
- 7. M. Ali Omar, Elementary Solid State Physics, Principles and Applications, Addition-Wesly series, 1993.

Course Title:	ICS Course Type: Theory						
Course Code: 23PP42							
Total Hours: 90)	Hours/Week: 6	Credits: 4				
Pass-Out Policy	· :						
Minimum Conta	act Hours: 5	4					
Total Score %:	100	Internal: 40	External: 60				
Minimum Pass	%: 50 [N	Io Minimum for Internal]					
Course Creato	<u>r:</u>	Expert 1:	Expert 2:				
Prof. A. Charle Roy	s Hepzy	Dr. Y. Premila Rachelin	Dr. V. Anslin Ferby				
Asso. Prof., Fa	culty Head	Asso. Prof. of Physics	Prof. of Physics				
+9199442618	81	+919489620591	+919443595694				
achroy66@gm	ail.com	premilarachelin@gmail.com	anslinv@gmail.com				

CLO No.	Expected Course Learning Outcome Upon completion of this course, students will be able to:	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	Cognitive Level CL	Knowledge Catogory KC
CLO- 1	Explainthephenomenologicalintroductiontothermodynamicsthroughthermodynamicspostulates, quantities and relations	8[20]	1,3,5, 7,8,9	R, U	С
CLO- 2	Assess the behaviour of ideal gas, black body, specific heat of solids and to deduce Bose Einstein statistical distribution functions.	8[20]	1,3,5, 7,8,9	U, Ap	C, F
CLO- 3	Analyse the phenomena of specific heat of gases and deduce and Fermi Dirac distribution law.	8[20]	1,3,5, 7,8,9	An	F, P
CLO- 4	Interpret the idea on postulates of statistical mechanics, statistical interpretation of thermodynamics	8[20]	1,3,5, 7,8,9	An, E	Р

	and understand thermodynamical quantities in terms of partition function				
CLO-5	Categorize the phase transitions and understand the statistical equilibrium in semiconductors	8[20]	1,3,5, 7,8,9	Е, С	М

Module	Course Description	Hours	% CLO Mapping with Module	Learning Activitie	Assessment Tasks	Reference		
Ι	I THERMODYNAMICS							
1.1	Review of thermodynamics - Definition of terms	1	1[10]	Lec	CA	1		
1.2	First law, second law and third law		1[10]	Lec	СТ	1		
1.3	Gibb's free energy and Helmholtz' free energy		1[10]	Lec	НоА	1		
1.4	Thermodynamical potential		1[5]	GD	SA	1		
1.5	Phase-space, Ensembles		1[5]	Sem	Quiz	1		
1.6	Micro canonical, canonical and grand canonical ensembles	1	1[5]	TPS	HrA	2		
1.7	Chemical potential – Density of states – Liouville's theorem		1[10]	РТ	Ess	2		
1.8	Probability consideration of tossing of distinguishable and indistinguishable coins	1	1[10]	Sem	CA	2		
1.9	General expression for probability of distribution – Stirling's formula	1	1[10]	Lec	HoA	3		
1.10	Most probable distribution	1	1[5]	GD	Quiz	3		
1.11	Maxwell-Boltzmann's distribution law	1	1[10]	Lec	Ess	3		
1.12	Law of equipartition of energy		1[10]	Lec	SA	3		
II	QUANTUM STATISTICS							
2.1	Quantum statistics of identical particles	1	2[5]	GD	HoA	4		
2.2	Density matrix and limitations	1	2[5]	TPS	CA	4		
2.3	Bose-Einstein distribution law	1	2[20]	Lec	Ess	4		
2.4	Black body radiation – Planck's radiation law	1	2 [20]	Lec	Ess	4		
2.5	Specific heat of solids	1	2[5]	PT	Quiz	4		
2.6	Einstein theory	2	2[10]	Sem	Ess	5		
2.7	Debye's theory	2	2[10]	Lec	CA	5		
2.8	Ideal Bose-Einstein gas	1	2[5]	Lec	Ess	5		
2.9	Degeneracy of Bose- Einstein gas	1	2[15]	Lec	CA	5		
2.10	Bose-Einstein Condensation	1	2[5]	Lec	SA	5		
	SPECIFIC HEAT OF GASES		054.53	-				
3.1	Fermi-Dirac distribution law	1	3[10]	Lec	Ess	4		
3.2	Ideal Fermi-Dirac gas	1	3[5]	GD	Quiz	4		
3.3	Fermi energy		3[5]	TPS	ESS	4		
3.4	Degeneracy	1	3[5]	Sem	CA	5		

3.5	Weak degeneracy, strong degeneracy		3[10]	Sem	Ess	5
3.6	Electron gas in metals		3[15]	Lec	Ess	6
3.7	Thermionic emission of electrons		3[15]	Lec	Ess	6
3.8	Specific heat of gases		3[5]	PT	SA	6
3.9	Monoatomic, diatomic and polyatomic		3[15]	GD	CA	6
	gases					
3.10	Variation of atomicity with temperature	1	3[15]	GD	HoA	6
IV	PARTITION FUNCTION					
4.1	1 Relation between statistical and		4[5]	GD	Quiz	7
	thermodynamical quantities					
4.2	Partition function		4[5]	Sem	SA	7
4.3	Partition function and thermodynamical	2	4[20]	Lec	Ess	7
	quantities					
4.4	Entropy mixing and Gibbs' paradox	1	4[20]	Lec	Ess	7
4.5	Saucker-tetrode equation for entropy	1	4[10]	Lec	CA	7
4.6	Molecular partition function	1	4[5]	Sem	SA	8
4.7	Translational partition function	1	4[5]	Lec	Ess	8
4.8	Rotational partition function	1	4[5]	Lec	Ess	8
4.9	Vibrational partition function	1	4[5]	Lec	Ess	8
4.10	Application of rotational partition function	1	4[10]	Sem	Ess	8
4.11	Application of vibrational partition function		4[10]	Sem	Ess	8
V	SEMICONDUCTOR STATISTICS					
5.1	Statistical equilibrium of free electrons in	1	5[10]	GD	SA	1
	semiconductors					
5.2	Non-degenerate semiconductors	1	5[15]	Lec	Ess	1
5.3	Degenerate semiconductors	1	5[15]	Lec	SA	1
5.4	Impurity semiconductors	1	5[10]	Lec	CA	1
5.5	Non equilibrium semiconductors	1	5{10]	Sem	Ess	1
5.6	Fluctuation in energy	1	5[10]	Lec	SA	1
5.7	Fluctuations in concentration	2	5[15]	Lec	Ess	1
5.8	First order Phase transitions	1	5[15]	Sem	Ess	5
5.9	Second order Phase transitions	1	5[15]	Sem	Ess	5

1. Sears and Salinger, Thermodynamics, Addison-Wesley Publishing Co., 1975.

- 2. Kerson and K. Huang, Statistical Mechanics, John Wiley & Sons, Inc., New York, 1963.
- 3. A.K. Dasgupta, Fundamentals of Statistical Mechanics, New Central Book Agency (P) Ltd., Calcutta, 2000.
- 4. Sears and Zymanski, Statistical Mechanics, McGraw Hill Book Company, New York, 1961.
- 5. A.K. Agarwal and Melvin Eisner, Statistical Mechanics, New Age International (P) Limited, New Delhi, 1998.
- 6. Federick Reif, Fundamentals of Statistical and Thermal Physics, McGraw Hill International Editions, Singapore, 1985.
- 7. Brijlal, N. Subramaniam, P. S. Hemne, Heat Thermodynamics And Statistical Physics, S Chand; 2008
- 8. <u>https://ether.chem.iitb.ac.in/~bltembe/pdfs/ch_3.pdf</u>
- 9. Mark W. Zemansky and Richard H. Dittman, Heat and Thermodynamics, 7th edition, McGraw-Hill International, 1997.
- 10. F. Schwabl, Statistical Mechanics, Sprigner, 2006.

Course Title:	NUCLEAR AN	ND PARTICLE PHYSICS	Course Type: Theory				
			Course Code: 23PP43				
Total Hours: 90		Hours/Week: 6	Credits: 4				
Pass-Out Policy :							
Minimum Contact Hours: 54							
Total Score %: 1	L OO	Internal: 40	External: 60				
Minimum Pass %: 50 [No Minimum for Internal]							
Course Creator	•• •	Expert 1:	Expert 2:				
Prof. A. Charles Hepzy Roy		Dr.T.R. Beena	Dr. D.J. Jeejamol				
Asso. Prof., Faculty Head		Assi. Prof. of Physics	Assi. Prof. of Physics				
+91994426188	31	9487386199	+917598629087				
achroy66@gm	ail.com	trbeena@gmail.com	lomajeej@gmail.com				

CL O- No.	Course Learning Outcome Upon completion of this course, students will be able to:	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	ognitive Level CL	Knowled ge Catogory KC	
CLO- 1	Get a thorough knowledge on constituents of nucleus with a good idea in nuclear properties and nuclear forces. Analyze scattering problems so as to understand nucleon-nucleon interaction.	4[10] 8[10]	1,2,6, 7,9	An	С	
CLO- 2	List out and describe various kinds of nuclear reactions. Explain, classify and compare different nuclear models.	4[10] 8[10]	1,2,6, 7,9	An	F	
CLO- 3	Distinguish and examine theories of different radioactive decay processes.	4[10] 8[10]	1,2,6, 7,9	U	Р	
CLO- 4	Make use of nuclear fission and fusion concepts in nuclear reactors as well as acquire knowledge in designing the	4[10] 8[10]	1,2,6, 7,9	R, C	С, Р	
CLO- 5	Understand interaction between the elementary particles discovered so far. Classify elementary particles and elaborate their knowledgeon quarks.	4[10] 8[10]	1,2,6, 7,9	Е	М	
Module	Course Description	Hours	% CLO Mapping with Module	Learning Activitie	Assessment Tasks	Reference
--------	--	-------	---------------------------------	-----------------------	---------------------	-----------
Ι	NUCLEAR FORCES AND DEUTERO	ON PR	ROBLEMS			
1.1	Nuclear forces	1	1[5]	Lec	SA	1
1.2	Binding energy	1	1[10]	Lec	Qu i	1
1.3	Weizsacker semi empirical mass formula	1	1[15]	GD	Es s	1
1.4	Ground and excited state of deuteron	2	1[10]	BS	Se m	1
1.5	Meson theory of nuclear forces	1	1[10]	Lec	Es s	1
1.6	Neutron – proton scattering of low energies	1	1[15]	GD	Es s	1
1.7	Phase shift analysis scattering length	2	1[15]	GD	SA	1
1.8	Effective range theory in n-p scattering	1	1[10]	BS	Se m	1
1.9	Spin dependence of nuclear forces and charge independence of nuclear forces.	2	1[10]	TPS	As s	1
II	NUCLEAR REACTIONS AND MODEL	S		1		
2.1	Kinds of nuclear reactions	1	2[10]	Lec	SA	1
2.2	Nuclear cross-section	1	2[5]	TPS	SA	1
2.3	Partial wave analysis of reaction crosssection	1	2[10]	Lec	Es s	1
2.4	Compound nucleus	1	2[10]	GD	Se m	1
2.5	Inverse process (Reciprocity theorem)	1	2[10]	BS	As s	1
2.6	Cross section of nuclear reaction	1	2[10]	TPS	As s	1
2.7	Resonance	1	2[5]	Lec	SA	1
2.8	Briet Wigner one level formula	2	2[10]	00	Es s	1
2.9	Liquid drop model	1	2[5]	GD	Es s	1
2.10	Shell model	2	2[10]	GD	Se m	1
2.11	Extreme single particle model	2	2[10]	GD	As s	1
2.12	Predictions of shell model	1	2[5]	BS	MC Q	1
III	RADIOACTIVE DECAY					L
3.1	α-decay - Gamow"s theory	2	3[10]	Lec	Es	1

					S	
22	R docay Formi ^s c theory	2	2[10]	Loc	Fc	1
5.2	p-uecay - Fermi Stileory		5[10]	Let		1
2.2		1	2[10]	CD	S	1
3.3	Pauli's neutrino hypothesis	1	3[10]	GD	SA	1
3.4	Angular momentum and parity	1	3[10]	BS	Se	1
	selection		-[]		m	
	rules					
3.5	Violation of parity conservation in β	1	3[10]	BS	As	1
	decay				s	
36	Gamma decay	1	3[10]	Lec	Es	1
0.0	Guillina accuy		5[10]	Цес	6	
27	Electric and magnetic multipole	1	2[10]	CD	E C	1
5.7		1	5[10]	GD	ES	1
	radiation		054.07		S	
3.8	Selection rules	1	3[10]	TPS	As	1
					S	
3.9	Internal conversion	1	3[10]	Lec	SA	1
3.10	Nuclear isomers	1	3[10]	Lec	Qu	1
					i	
IV	NUCLEAR FISSION, FUSION AND RE	ACTO	ORS		1	1
41	Types of fission		4[6]	Lec	Es	1
1.1	Types of institut	1	1[0]	Цес	 	1
12	Distribution of fission products		4[6]	Log	5 Ee	1
4.2	Distribution of fission products	1	4[0]	Lec	ES	
					S	
4.3	Mass and energy	0.	4[7]	GD	SA	1
		5				
4.4	Bohr Wheeler theory	1	4[7]	Lec	Se	1
		1			m	
4.5	Barrier penetration	0.	4[7]	BS	As	1
	-	5			s	
4.6	Theory of spontaneous fission		4[7]	TPS	Es	1
		1	-[,]		s	-
47	Nuclear chain reaction four factor		1[0]	CD		1
4.7	formula	1	4[0]	αD	AS	1
1.0			4[0]	DC	S	1
4.8	Critical size	0.	4[8]	R2	Se	
		5		_	m	
4.9	Neutron emission	1	4[7]	Lec	SA	1
4.10	Diffusion equation	1	4[7]	GD	Es	1
					S	
4.11	Reactor design	_	4[8]	BS	Ou	1
	5				i	
412	Classification of reactors - Nuclear		4[7]	Lec	Es	1
1.12	fusion	1	1[/]	Цес	<u>с</u>	1
112	Thormo nuclear energy	0	4[7]	Log	3	1
4.15	Thermo nuclear energy		4[/]	Lec	AS	1
		5	4563	05	S	-
4.14	Controlled thermo nuclear reactions.	1	4[8]	GD	Se	1
					m	
V	ELEMENTARY PARTICLES					
5.1	Types of interaction	0.	7[15]	Lec	SA	1

		5				
5.2	Classification of elementary particles	1	8[17]	Lec	Qu	1
					i	
5.3	Conservation laws	0.	7[15]	GD	Es	1
		5			S	
5.4	Elementary ideas CP and CPT	1	7[15]	BS	Es	1
	invariance				S	
5.5	Classification of hadrons	1	8[17]	Lec	SA	1
5.6	SU(2) and SU(3) symmetries	2	7[15]	GD	Es	1
					S	
5.7	Baryon octet – Meson octet	1	7[14]	00	As	1
					S	
5.8	Baryon decuplet	1	7[14]	00	As	1
					S	
5.9	Gellmann Okubo mass formula	2	7[12]	GD	Es	1
					s	
5.10	Quarks – Flavours and colors	1	8[17]	Lec	Es	1
					s	
5.11	Quark model of the nuclei	1	8[17]	BS	Se	1
					m	
5.12	The Standard model.	1	8[16]	Lec	As	1
					s	
5.13	Higgs Bosons	1	8[16]	GD	Se	1
					m	

BOOKS FOR REFERENCE:

- 1. D. C. Tayal, Nuclear physics, Himalaya Publishing House, 2009.
- 2. V. Devanathan, Nuclear Physics, Narosa Publication, New Delhi, 2006.
- 3. Roy and Nigam, Nuclear Physics, Wiley Eastern Ltd., New Delhi, 1980.
- 4. M. L. Pandiya and R.P.S. Yadav, Elements of Nuclear Physics, Kedar Nath Ram Nath, Delhi,2006
- 5. D.K. Jha, Elements of Nuclear reactors, Discovery Publishing house, New Delhi, 2004.
- 6. J.M. Blatt and V.F. Weisskopf, Theoretical Nuclear Physics, Interscience, New York, 1952.
- 7. Y.R. Waghmare, Introduction to Nuclear Physics, OXFORD STBH, New Delhi, 1981.
- 8. B.L. Cohen, Concepts of Nuclear Physics, McGraw Hill Book Company, 1971.
- 9. M.K. Pal, Theory of Nuclear Structure, Affiliated East-West Press, New Delhi, 1982.
- 10. A. Bohr and B.R. Mottelson, Nuclear Structure Vol. I & II Benjamin, 1975.
- 11. Herald A. Enge, Introduction to Nuclear Physics, I Edi. Addition Wesly, 1966.
- 12. J.M. Eisenberg and W. Greiner, Nuclear Theory Vol. I & II, North

Holland Publishing Co., Amsterdam, 1972.

Course Title: NUMERICAI	L METHODS & MATLAB	Course Type: Theory		
		Course Code: 23PPEE		
Total Hours: 90	Hours/Week: 6	Credits: 4		
Pass-Out Policy :				
Minimum Contact Hours: 54	4			
Total Score %: 100	Internal: 40	External: 60		
Minimum Pass %: 50 [N	o Minimum for Internal]			
<u>Course Creator:</u>	Expert 1:	Expert 2:		
Prof. A. Charles Hepzy Roy	Dr. C. James	Dr. V. Anslin Ferby		
Asso. Prof., Faculty Head	Asso. Prof. of Physics	Asso. Prof. of Physics		
+919944261881	+919489500237	+919443595694		
achroy66@gmail.com	james@scottchristian.org	anslinv@gmail.com		

CLO No.	Expected Course Learning Outcome Upon completion of this course, the students will be able to	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	Cognitive Level CL	Knowledge Catogory KC
CLO- 1	use Matlab software tool and programming to find solution of various numerical problems.	6[10] 7[10]	1,2,4, 5,10	An	С
CLO- 2	apply Matlab to determine solutions of linear system of equations.	6[10] 7[10]	1,2,4, 5,10	An	F
CLO- 3	determine solution of nonlinear system of equations using Matlab and perform data analysis by fitting of curves using Matlab.	6[10] 7[10]	1,2,4, 5,10	U	C, P
CLO- 4	calculate statistical variables using Matlab functions evaluate numerical ntegration of equally and non- equally spaced data using Matlab	6[10] 7[10]	1,2,4, 5,10	R, C	F, P
CLO-5	estimate derivatives of functions of first-order and higher using Matlab. solve ordinary differential equations using Matlab.	6[10] 7[10]	1,2,4, 5,10	Е	М

Module	Course Description	Hours	% CLO Mapping with Module	Learning Activitie	Assessment Tasks	Reference
I BAS	SIC MATLAB					
1.1	Creating Variables and Using Basic Arithmetic	1	1 [5]	Lec	MC Q	1
1.2	Standard Functions	1	1 [5]	PT	Ass	1
1.3	Vectors and Matrices	1	1 [10]	TPS	Ass	1
1.4	M-Files	0.5	1 [10]	Lec	Pro	1

1.5	The colon Notation and the for Loop	1	1 [5]	00	Ass	1
1.6	The if Construct	1	1 [10]	Lec	Pro	1
1.7	The while Loop	1	1 [10]	GT	Pro	1
1.8	Simple Screen Output	0.5	1 [5]	РТ	Qui	1
1.9	Keyboard Input	0.5	1 [5]	BS	MC O	1
.10	User Defined Functions	1	1 [10]	Lec	Pro	1
.11	Basic Statistics	1	1 [10]	GT	Pro	1
.12	Plotting	1	1 [10]	Lec	Ass	1
1.13	Formatted Screen Output	0.5	1 [5]	BS	Qui	1
.14	File Input and Output (Formatted & Unformatted input & Output	1	1 [10]	GD	MP r	1
II SO	LUTIONS TO LINEAR AND NONLINEAR EQ	UATIOI	VS		•	
2.1	Linear Systems	1	2 [7]	Lec	MC Q	1,2
2.2	Gaussian Elimination	1	2 [10]	GT	Ass	1,2
2.3	Row Interchanges	0.5	2 [10]	PT	Qui	1,2
2.4	Partial Pivoting	0.5	2 [10]	SM	Pro	1,2
2.5	Multiple Right-Hand Sides	1	2 [7]	Lec	Pro	1,2
2.6	Singular Systems	1	2 [7]	Lec	Ass	1,2
2.7	Ill-Conditioned Systems	1	2 [7]	GD	Ass	1,2
2.8	Gauss-Seidel Iteration	1	2 [7]	Lec	Pro	1,2
2.9	Bisection Method	0.5	2 [7]	Lec	MC Q	1,2
.10	Finding an Interval containing a Root	0.5	2 [7]	PT	Pro	1,2
.11	Rule of False Position	1	2 [7]	00	Ass	1,2
.12	The Secant Method	1	2 [7]	GT	Qui	1,2
13	Newton's Method for Systems of	1	2 [7]	Lec	Pro	12
	Nonlinear Equations	-		Цес	110	1,4
.14	Higher Order Systems	1	2 [7]	GD	Ass	1,2
III CI	URVE FITTING AND STATISTICS	1	1			
3.1	Linear Interpolation	0.5	3[6]	Lec	MC Q	1,2
3.2	Differences	0.5	3[6]	CL	Ass	1,2
3.3	Polynomial Interpolation	1	3[6]	Lec	SA	1,2
3.4	Newton Interpolation	1	3[6]	EL	Pro	1,2
3.5	Neville Interpolation	0.5	3[6]	PT	Pro	1,2
3.6	Spline Interpolation	0.5	3[6]	EL	Pro	1,2
3.7	Least Squares Approximation	1	3[6]	Lec	Ass	1,2
3.8	Least Squares Straight Line	1	3[6]	EL	Pro	1.2
	Approximation	-			110	1,2
3.9	Least Squares Polynomial	1	3[6]	00	Ass	1.2
	Approximation	_				_,_
.10	Statistical Terms	0.5	3[6]	Lec	MC Q	1,2
.11	Random Variable	0.5	3[6]	BS	Ass	1,2
.12	Frequency Distribution	0.5	3[6]	GT	Ass	1,2
.13	Expected Value, Average and Mean	0.5	3[6]	GT	Ass	1,2

		1				
.14	Variance and Standard Deviation	1	3[6]	PT	Ass	1,2
.15	Covariance and Correlation	1	3[6]	GD	Pro	1,2
.16	Least Squares Analysis	1	3[6]	Lec	MC Q	1,2
.17	Random Numbers	0.5	3[6]	BS	Qui	1,2
.18	Generating Random Numbers	0.5	3[6]	BS	Qui	1,2
.19	Random Number Generators	0.5	3[6]	TPS	Pro	1,2
.20	Customising Random Numbers	0.5	3[6]	PT	Ass	1,2
.21	Monte Carlo Integration	1	3[6]	EL	Pro	1,2
IV N	UMERICAL INTEGRATION AND DIFFEREN	ITIATI	ON			
4.1	Analytic vs. Numerica Integration	0.5	4 [10]	Lec	MC Q	1,2
4.2	The Trapezium Rule (Again)	1	4 [10]	Lec	Pro	1,2
4.3	Simpson's Rule (Again)	1	4 [10]	PT	Pro	1,2
4.4	Higher Order Rules	1	4 [10]	EL	Pro	1,2
4.5	Gaussian Quadrature	1	4 [10]	EL	Pro	1,2
4.6	Numerical Differentiation: Two-Point Formula	0.5	4 [10]	Lec	Qui	1,2
4.7	Three- and Five-Point Formulae	0.5	4 [10]	GD	Qui	1,2
4.8	Higher Order Derivatives	1	4 [10]	00	Pro	1,2
4.9	Error Analysis	1	4 [10]	BS	Pro	1,2
.10	Cauchy's Theorem	1	4 [10]	Lec	SA	1,2
V OR	DINARY DIFFERENTIAL EQUATIONS, EIG	GENVA	LUES ANI	D		
EIGE	NVECTORS	1		1	1	
5.1	First-Order Equations	1	5 [7]	PT	Pro	1,2
5.2	Euler's Method	1	5 [7]	TPS	Pro	1,2
5.3	Runge–Kutta Methods	1	5 [7]	GD	Pro	1,2
5.4	Fourth-Order Runge–Kutta	1	5 [7]	SM	Qui	1,2
5.5	Systems of First-Order Equations	1	5 [7]	EL	Pro	1,2
5.6	Higher Order Equations	0.5	5 [7]	Lec	Qui	1,2
5.7	Boundary Value Problems	0.5	5 [7]	Lec	Qui	1,2
5.8	Shooting Method	1	5 [7]	GT	Pro	1,2
5.9	Difference Equations	1	5 [7]	00	Pro	1,2
5.10	The Characteristic Polynomial	1	5 [7]	EL	Pro	1,2
5.11	The Power Method	1	5 [7]	TPS	Qui	1,2
5.12	Power Method, Theory	1	5 [7]	GD	Ass	1,2
5.13	Eigenvalues of Special Matrices	1	5 [7]	TPS	Ass	1,2
5.14	Eigenvalues, Diagonal Matrix	1	5 [3]	PT	Pro	1,2
5.15	Eigenvalues, Upper Triangular Matrix	1	5 [3]	GT	Ass	1,2
5.15	A Simple QR Method	1	5 [3]	00	Pro	1,2

BOOKS FOR REFERENCE

- 1. C. Woodford, C. Phillips, *Numerical Methods with Worked Examples: Matlab Edition.* II Edn, Springer, London, 2012.
- 2. Won Young Yang, Wenwu Cao, Tae-Sang Chung, John Morris, *Applied Numerical Methods Using Matlab*, John Wiley & Sons, Inc., New Jersey, 2005.

- 3. Todd Young and Martin J. Mohlenkamp, *Raymond P. Canale, Introduction to Numerical Methods and Matlab Programming for Engineers*, Ohio University, Athens, 2020.
- 4. Jaan Kiusalaas, *Numerical Methods In Engineering With Matlab*, Cambridge University Press, UK, 2005.
- 5. Cleve B. Moler, *Numerical Computing with MATLAB*, SIAM, US, 2004
- 6. R2017a, *MATLAB Primer*, The MathWorks, Inc., US, 2017.

Course Title:	NUMERICAL M	ETHODS & MATLAB Co	ourse Type: Practical IV
			Course Code: 23PPP4
Total Hours: 9	90	Hours/Week: 6	Credits: 4
Pass-Out Poli	cy :		
Minimum Con	tact Hours: 54		
Total Score %	: 100	Internal: 40	External: 60
Minimum Pas	s %: 50 [No M	linimum for Internal]	
Course Creat	<u>or:</u>	Expert 1:	Expert 2:
Prof. A. Char	es Hepzy Roy	Dr. C. James	Dr. V. Anslin Ferby
Asso. Prof., F	aculty Head	Asso. Prof. of Physics	Asso. Prof. of Physics
+919944261881		+919489500237	+919443595694
achroy66@gmail.com		james@scottchristian.org	anslinv@gmail.co m

CLO No.	Expected Course Learning Outcome Upon completion of this course, the students will be able to	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	Cognitive Level CL	Knowledge Catogory KC
CLO- 1	numerical methods and implementation of these algorithms using the software package MATLAB.	6[10] 7[10]	1,2,4, 5,10	An	Р
CLO- 2	Write efficient, well-documented Matlab code and present numerical results in an informative way.	6[10] 7[10]	1,2,4, 5,10	An	Р
CLO- 3	The focus of this module is to do a quick introduction of most popular numerical methods in linear algebra, and use of MATLAB to solve practical problems.	6[10] 7[10]	1,2,4, 5,10	U	Р
CLO- 4	Helps to develop the mathematical skills of the students in the areas of numerical methods.	6[10] 7[10]	1,2,4, 5,10	R, C	М
CLO- 5	Analyse and evaluate the accuracy of common numerical methods. Implement numerical methods in Matlab.	6[10] 7[10]	1,2,4, 5,10	E	М

No.	Course Description
1	Plotting:

	a) Plot a table of given data, with title, legends etc.
	b) Given table of refracting index and wavelength. Find the Cauchy's
	constants.
	c) Find the refractive index of the material for given wavelengths.
	d) Plot Gaussian function and find its parameters such as the height of the
	curve's peak the position of the centre of the peak and the standard
	deviation/Gaussian RMS width etc.
	e) Animate a Gaussian function by varying the sigma value.
	Roots of linear system – Gaussian methods:
	a) Verify the given set of linear simultaneous equations are singular system.
	b) Perform partial pivoting.
2	c) Check whether the given system is ill-conditioned.
	d) Solve the given set of linear simultaneous equations.
	e) Verify the answer with Gauss-Seidel Iteration method.
	f) Find the currents through the different arms of the Wheatstone's bridge.
	Roots of algebraic equations:
	a) Find the root of an algebraic equation using bisection method with given
	error tolerance
	h) Determine the root of the same equation using false position method
3	c) Calculate the root of the same equation using Secant Method
	d) Solve it using Newton's Method
	a) Compare the above methods with results and their errors
	f) Estimate the radius of a molecule by solving van der Waals equation
	Poots of nonlinear system of equations:
	a) Use bisection method to find a root of the equation by determining an
	initial interval containing a root
	h) Modify the code for the bisection method to find the root of equation by
	Bule of False Position and compare the number of iterations with bisection
4	method
	c) Obtain the root of equation using the Secont Method without an initial
	interval
	d) Determine the reat of the equation using Newton, Panhson method
	a) Find solution to nonlinear system of equations using Newton's method
	Polynomial Interpolation:
	a) Obtain the neumanial by internalating the given table of data using
	Nouton's interpolation method
	Newton's interpolation method.
-	b) Find the polynomial by interpolating the given table of data using Neville
5	interpolation method.
	c) Determine the polynomial by interpolating the given table of data using
	Spline interpolation method.
	d) Find the altitude, velocity and acceleration profile of a rocket from the
	data received from the velocity probe in the rocket.

	Numerical Integration:
	a) Integrate the given tabulated function using Trapezium rule
	b) Integrate the same tabulated function using Simpson's rule.
~	c) Integrate a given function using Trapezium Rule.
0	d) Integrate the same function using Simpson's Rule
	e) Integrate the same function using Monte Carlo Method by generating
	random numbers.
	f) Compare the three methods with the results and errors.
	Calculation of Statistical Terms:
	a) Generate a sequence of random numbers using the multiplicative
	congruential generator
	b) Plot frequency distribution using Matlab statistical routines hist (histogram) bar (bar chart) to find Expected Value and Average
7	c) Find the mean and standard deviation of the sets of examination mark
	from the same group of students.
	d) Use Matlab statistical routines for to determine mean (mean), std. and
	cov. (covariance) for the marks obtained in a course
	e) Calculate the correlation coefficients for all possible pairings of mark
	obtained in three courses in a CIA test.
	Solution of Ordinary Differential Equations:
	a) Solve the given first-order differential equation using Euler's method.
	b) Solve the same first-order differential equation using Runge-Kutta
	second order method.
8	c) Solve the same first-order differential equation using Runge-Kutta fourth
	order method.
	d) Compare the methods with the results and errors.
	e) Obtain the radioactive profile of a given radioactive molecule.
	t) Find the quantity of radioactive material leftover at any point of time.
	Eigenvalue and Eigenvector:
	a) Find the Eigen value and their corresponding Eigen vectors of the given
	square matrix using Power Method.
	b) Determine the Ligen value and their corresponding Ligen vectors of the
0	given diagonal matrix using Power Method.
9	c) compute the Eigen value and their corresponding Eigen vectors of the
	given upper triangular matrix using Power Method.
	a) Estimate the Eigen value and their corresponding Eigen vectors of the
	given matrix using simple QK Method.

Course Title:	QUANTUM C	OMPUTATIONAL PHYSICS	Course Type: Theory
			Course Code: 23PPEF
Total Hours: 90		Hours/Week: 6	Credits: 4
Pass-Out Policy	:		
Minimum Conta	ct Hours: 54		
Total Score %: 1	100	Internal: 40	External: 60
Minimum Pass	%: 50 [No	Minimum for Internal]	
Course Creator	<u>:</u>	Expert 1:	Expert 2:
Prof. A. Charles	s Hepzy Roy	Dr. C. James	Dr. D.Hudson Oliver
Asso. Prof., Fa	culty Head	Asso. Prof. of Physics	Assi. Prof. of Physics
+9199442618	81	+919489500237	+919952654515
achrov66@gm	ail.com	iames@scottchristian.org	hudson2612@gmail.
aciii 0y00@giiiaii.coiii		Junies & Section Istuniorg	com

CLO No.	Expected Course Learning Outcome Upon completion of this course, the students will be able to	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	Cognitive Level CL	Knowledge Catogory KC
CLO- 1	Mastery of GPT-Prompting: Students will become proficient in leveraging GPT-Prompting for formulating and solving complex problems in quantum mechanics and other physics domains.	6[10] 10[10]	1,2, 3,5, 7,9,10	An	F, C
CLO- 2	Programming Proficiency: Develop strong programming skills in Python and MATLAB, enabling students to implement and optimize solutions to real-world physics challenges	6[10] 10[10]	1,2, 3,5, 7,9,10	An	С, Р
CLO- 3	Quantum Problem-Solving: Gain a deep understanding of quantum mechanics and apply computational methods to solve intricate quantum problems using GPT-based approaches	6[10] 10[10]	1,2, 3,5, 7,9,10	U	F, P
CLO- 4	Integration Skills: Learn how to seamlessly integrate GPT- Prompting with Python and MATLAB for enhanced problem- solving capabilities in various physics applications	6[10] 10[10]	1,2, 3,5, 7,9,10	R, C	Μ
CLO-5	Critical Thinking and Communication: Foster critical thinking skills and the ability to communicate effectively, both in code and through clear explanations of physics concepts	6[10] 10[10]	1,2, 3,5, 7,9,10	Е	Р, М

	and computational solutions						
Module	Course Description	Hours	% CLO Manning with	Module	Learning Activitie	Assessment Tasks	Reference
Ι	INTRODUCTION TO QUANTUM COMPUTING	G AN	ID G	РT·	PROM	PTIN	G
1.1	Quantum Computing Fundamentals	1	1[1	0]	Lec	SA	1
1.2	Introduction to GPT-Prompting in Physics	1	1[1	0]	Lec	Ess	3
1.3	Setting up Python and MATLAB for Quantum Computing	1	1[1	0]	GD	SA	4
1.4	Basic GPT-Prompting Commands	1	1[1	0]	GD	Pro	1
1.5	Quantum Mechanics Overview	1	1[1	0]	TPS	Sem	1
1.6	GPT Interaction with Python and MATLAB	2	1[1	0]	Lec	SA	4
1.7	Quantum Problem Formulation	1	1[1	0]	Lec	Sem	1
1.8	Troubleshooting and Debugging	1	1[1	0]	Lec	Qui	1
1.9	Quantum Prompting Workflow	1	1[1	0]	Lec	Pro	1
.10	Quantum Prompting Best Practices	1	1[1	0]	GD	Pro	1
II	QUANTUM STATE REPRESENTATION	S Al	ND C	PE	RATO	RS	
2.1	Quantum States and Dirac Notation	1	2[1	0]	Lec	SA	1
2.2	Hermitian Operators and Observables	1	2[1	0]	Lec	ESS	1
2.3	Matrix Representations in Python and MATLAB	2	2[1	0]	GD	SA	4
2.4	Quantum Gates and Circuits	1	2[1	0]	GD	Pro	1
2.5	Quantum Superposition and Entanglement	1	2[1	0]	TPS	Sem	1
2.6	Quantum State Evolution	1	2[1	0]	Lec	SA	1
2.7	Expectation Values and Measurements	1	2[1	0]	Lec	Sem	1
2.8	Quantum Noise and Decoherence	1	2[1	0]	Lec	Qui	1
2.9	Quantum Information Theory Basics	1	2[1	0]	Lec	Pro	1
.10	Problem Solving: Manipulating Quantum States	1	2[1	0]	GD	Pro	1
III	ADVANCED QUANTUM ALGORITHM	S Al	ND S	ΙΜΙ	ULATI	ONS	
3.1	Grover's Algorithm and Search Problems	1	3[1	0]	Lec	SA	2
3.2	Shor's Algorithm for Integer Factorization	1	3[1	0]	Lec	Ess	2
3.3	Quantum Fourier Transform	1	3[1	0]	GD	SA	2
3.4	Variational Quantum Eigensolvers	1	3[1	0]	GD	Pro	2
3.5	Quantum Machine Learning Applications	1	3[1	0]	TPS	Sem	2
3.6	Quantum Walks and Quantum Cellular Automata	1	3[1	0]	Lec	SA	2
3.7	Quantum Chemistry Simulations	1	3[1	0]	Lec	Sem	2
3.8	Quantum Simulations with Python and MATLAB	2	3[1	0]	Lec	Qui	4
3.9	Quantum Error Correction Techniques	1	3[1	0]	Lec	Pro	2
.10	Problem Solving: Implementing Quantum Algorithms	1	3[1	0]	GD	Pro	2
IV	APPLICATIONS IN COMPUTATION	NAI	D PH	YSI	CS		

4.1	Quantum Cryptography and Secure Communication	1	4[10]	Lec	Ess	2
4.2	Quantum Teleportation and Communication	1	4[10]	GD	SA	2
4.3	Quantum Sensing and Metrology	1	4[10]	GD	Pro	2
4.4	Quantum Computing in Materials Science	1	4[10]	TPS	Sem	2
4.5	Quantum Computing in Astrophysics	1	4[10]	Lec	SA	2
4.6	Quantum Computing in High-Energy Physics	2	4[10]	Lec	Sem	2
4.7	Quantum Computing in Climate Modeling	1	4[10]	Lec	Qui	2
4.8	Quantum Computing in Biological Systems	1	4[10]	Lec	Pro	2
4.9	Quantum Computing in Finance	1	4[10]	GD	Pro	2
.10	Problem Solving: Real-world Quantum Applications	1	4[10]	Lec	SA	2
V	CAPSTONE PROJECT AND INTEGRATION					
5.1	Project Planning and Proposal	1	5[10]	Lec	SA	3
5.2	GPT-Prompting Integration with Quantum Simulations	2	5[10]	Lec	Ess	3
5.3	Advanced Visualization Techniques	1	5[10]	GD	SA	3
5.4	Analyzing and Interpreting Results	1	5[10]	GD	Pro	3
5.5	Optimizing Quantum Prompting Model	1	5[10]	TPS	Sem	3
5.6	Code Integration: GPT-Prompting and Quantum Algorithms	2	5[10]	Lec	SA	3
5.7	Ethical Considerations in Quantum Prompting	2	5[10]	Lec	Sem	3
5.8	Collaborative Quantum Prompting Projects	2	5[10]	Lec	Qui	3
5.9	Presenting Findings and Project Documentation	2	5[10]	Lec	Pro	3
5.1 0	Future Trends in Quantum Prompting and Physics	2	5[10]	GD	Pro	3

BOOKS FOR REFERENCE

1. Preskill, J, Quantum Computing in the NISQ era and beyond, Quautum, 2018.

- 2. Nielsen, M. A., & Chuang, I. L. *Quantum Computation and Quantum Information*, Cambridge, New York, 2010.
- 3. OpenAI GPT API Documentation.
- 4. Python Documentation and Tutorials.
- 5. MATLAB Documentation and Tutorials.

Course Title: A	DVANCED OPT	ICS	Course Type: Theory
			Course Code: 23PPEG
Total Hours: 90	Н	lours/Week: 6	Credits: 4
Pass-Out Policy :	:		
Minimum Conta	ct Hours: 54		
Total Score %: 1	00	Internal: 40	External: 60
Minimum Pass %	%: 50 [No Min	nimum for Internal]	
Course Creator	· <u>·</u>	Expert 1:	Expert 2:
Prof. A. Charles	s Hepzy Roy	Dr.D.Hudson Oliver	Dr. C. James
Asso. Prof., Fac	culty Head	Assi. Prof. of Physics	Asso. Prof. of Physics
+91994426188	31	+919952654515	+919489500237
achroy66@gmail.com		hudsonoliver@sco	james@scottchristian.
		ttchristian.org	org

CLO No.	Expected Course Learning Outcome Upon completion of this course, the students will be able to:	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	Cognitive Level CL	Knowledge Catogory KC
CLO - 1	Apply the concepts of polarization and double refraction	8[20]	1,3,5, 7,8,9	An	С
CLO - 2	Analyse the working of different types of lasers	8[20]	1,3,5, 7,8,9	An	C, F
CLO - 3	Impart an extensive understanding of fiber optics	8[20]	1,3,5, 7,8,9	U	F, P
CLO - 4	differentiate first and second harmonic generation in non-linear optics	8[20]	1,3,5, 7,8,9	U, C	Р
CLO -5	Apply the principles of magneto- optic and electro-optic effects	8[20]	1,3,5, 7,8,9	E	Р, М

Module	Course Description	Hours	% CLO Mapping with Module	Learning Activitie	Assessment Tasks	Reference	
I	POLARIZATION AND DOUBLE REFRACTION						
1.1	Classification of polarization -	1	1[10]	TP	Qui	1	
	Transverse character of light waves			S	•		
1.2	Polarizer and analyser – Malus' law	1	1[8]	Lec	SA		
1.3	Production of polarized light	1	1[8]	Lec	Ess	1	
1.4	Wire grid polarizer and the polaroid	1	1[8]	GD	SA	1	
1.5	Polarization by reflection	1	1[8]	GD	Se	1	
	-				m		

1.6	Polarization by double refraction	1	1[10]	TP	Pro	1
1.7	Polarization by scattering	1	1[8]	Lec	SA	1
1.8	The phenomenon of double refraction	1	1[8]	Lec	Se	1
1.9	Normal and oblique incidence	1	1[7]	Lec	Oui	1
1.1	Interference of polarized light: Quarter	1	1[9]	Lec	Pro	1
0	and					
11	half wave plates	- 1	1[0]		D	1
1.1	Analysis of polarized light	1	1[8]	GD	Pro	1
1.1	Optical activity	1	1[8]	TP	Pro	1
Ī	LASERS					
2.1	Basic principles	1	2[9]	TP	Qui	2
				S		_
2.2	Spontaneous and stimulated emissions	1	2[9]	Lec	Ess	2
2.3	Components of the laser	1	2[9]	CL	Ess	2
2.4	Resonator and lasing action	1	2[10]	CL	Ess	2
2.5	Types of lasers and its applications	2	2[9]	Lec	SA	2
2.6	Solid state lasers – Ruby laser	1	2[9]	CL	Ass	2
2.7	Nd:YAG laser	1	2[9]	GD	Ess	2
2.8	gas lasers – He-Ne laser	1	2[9]	GD	SA	2
2.9	CO ₂ laser	1	2[9]	GD	Se	2
2.1	Chemical lasers – HCl laser	1	2[9]	TP	Pro	2
2.1	Semiconductor laser	1	2[9]	Lec	SA	2
1						
	FIBRE OPTICS		0101			0
3.1	Introduction – Total internal reflection	1	3[8]	Lec	Qui	3
3.2	The optical fiber	1	3[8]	PT	SA	3
3.3	Glass fibers	1	3[8]	S I P	Pro	3
3.4	The coherent bundle	1	3[8]	GD	SA	3
3.5	The numerical aperture	1	3[8]	Lec	Se m	3
3.6	Attenuation in optical fibers	1	3[10]	Lec	SA	3
3.7	Single and multi-mode fibers	1	3[10]	CL	Ess	3
3.8	Pulse dispersion in multimode optical fibers	1	3[10]	Lec	SA	3
3.9	Ray dispersion in multimode step	1	3[10]	GD	SA	3
3.1	Parabolic- index fibers	1	3[7]	Lec	Pro	3
3.1	Fiber-optic sensors: precision	1	3[6]	Lec	SA	3
3.1	Precision vibration sensor	1	3[7]	GD	Sem	3
2	NON LINEAD ODTICS					
1V 1.1	RON-LINEAR OF LICS	1	4[12]	Lec	MCO	2
<u> </u>	Harmonic generation	2	 	CD Det	Fee	2
т. <u></u> Л.2	Second harmonic generation	2	1[13] /[12]		CV	2
4.5	Dhase matching	<u>ک</u> 1	4[13] /[17]		Som	2 2
4 Γ	Third harmonic generation	2	τ[12] Δ[12]	CD	Fee	2
т.J 4.6	Ontical mixing	<u> </u>	Δ[12]	Lec	Fee	2
1.0	oputar mixing	Ŧ	1[14]		പാാ	4

4.7	Parametric generation of light	1	4[13]	Lec	Sem	2
4.8	Self-focusing of light	1	4[12]	CL	Ass	2
V	MAGNETO - OPTICS AND ELECTRO	- OPTI	CS			
5.1	Magneto-optical effects	1	5[7]	Lec	Qui	1
5.2	Zeeman effect	1	5[8]	Lec	SA	1
5.3	Inverse Zeeman effect	1	5[8]	GD	Ess	1
5.4	Faraday effect	1	5[8]	CL	Ess	1
5.5	Voigt effect	1	5[7]	Lec	Sem	1
5.6	Cotton-mouton effect	1	5[8]	BS	MCQ	1
5.7	Kerr magneto- optic effect	1	5[7]	Lec	SA	1
5.8	Electro-optical effects	1	5[8]	Lec	SA	1
5.9	Stark effect	1	5[8]	BS	MC Q	1
5.1 0	Inverse stark effect	1	5[8]	Lec	Ess	1
5.1 1	Electric double refraction	1	5[8]	CL	Sem	1
5.1 2	Kerr electro-optic effect	1	5[7]	CL	Ess	1
5.1 3	Pockels electro- optic effect	1	5[8]	Lec	Sem	1

BOOKS FOR REFERENCE

- 1. F. S. Jenkins and H. E. White, 1981, Fundamentals of Optics, (4thEdition), McGraw Hill International Edition.
- 2. B. B. Laud, 2017, Lasers and Non Linear Optics, 3rd Edition, New Age International (P) Ltd.
- 3. Ajoy Ghatak, 2017, Optics, 6th Edition, McGraw Hill Education Pvt. Ltd.
- 4. William T. Silfvast, 1996, Laser Fundamentals Cambridge University Press, New York
- 5. J. Peatros, Physics of Light and Optics, a good (and free!) electronic book
- 6. B. Saleh, and M. Teich, Fundamentals of Photonics, Wiley-Interscience,
- 7. Dieter Meschede, 2004, Optics, Light and Lasers, Wiley VCH, Varley GmbH.
- 8. Lipson, S. G. Lipson and H. Lipson, 2011, Optical Physics, 4th Edition, Cambridge University Press, New Delhi, 2011.
- 9. Y. B. Band, Light and Matter, Wiley and Sons (2006)
- 10. R. Guenther, Modern Optics, Wiley and Sons (1990)

Course Title:	QUANTUM COMPUTATIONAL	PHYSICS	Course Type: Practical
			Course Code:
Total Hours: 90	Hours/Week:	6	Credits: 4
Pass-Out Policy :			
Minimum Contac	t Hours: 54		
Total Score %: 10	0 Interna	l: 40	External: 60
Minimum Pass %	: 50 [No Minimum for Int	ernal]	
Course Creator:	Expert 1:	Ex	<u>pert 1:</u>
Prof. A. Charles Hepzy Roy	Dr. C. James	Dr.	D. Hudson Oliver
Asso. Prof., Facu Head	Asso. Prof. of Physics	Ass	si. Prof. of Physics

+919944261881	+919489500237	+919952654515
achroy66@gmail.c	james@scottchristian	hudsonoliver@scottchristia
om	.org	n.org

CLO No.	Expected Course Learning Outcome Upon completion of this course, the students will be able to:	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	Cognitive Level CL	Knowledge Catogory KC
CLO- 1	Students will learn the basics of Computational Physics and numerical methods	6[10] 10[10]	1,3,5, 7,9	An	Р
CLO- 2	Using Matrix calculations to solve problems like, Fourier series and related problems	6[10] 10[10]	1,3,5, 7,9	An	Р
CLO- 3	Students are expected to perform & learn computation of data by using different numerical methods, solving boundary value problem	6[10] 10[10]	1,3,5, 7,9	U	F, P
CLO- 4	Able to solve problems with Fourier transform, solution of ODE and PDE	6[10] 10[10]	1,3,5, 7,9	U, C	Р
CLO- 5	Students will learn the simulation methods like Monte Carlo method and Molecular Dynamics, introduction to Parallel computing and Quantum computing	6[10] 10[10]	1,3,5, 7,9	Е	Р, М

(Perform any two from each module from the following list of experiments)

No	Course Description
	GPT Interaction with Python and MATLAB:
	a) Interact with the GPT (like GPT-3) API and its capabilities through
	a simple Python script by sending prompts and receiving
	responses.
	b) Create a program that sends user input to GPT and retrieves and
	displays the generated text.
1	c) GPT integration in MATLAB by using its Python interoperability.
	Run Python scripts within MATLAB to interact with the GPT API.
	d) Create a task where GPT assists in automating a process in either
	Python or MATLAB. For instance, generating code snippets, writing
	reports, or assisting in data analysis.
	e) Configure Python and MATLAB environments for quantum
	computing tasks and utilize GPT for problem-solving assistance.
	Quantum State Representations and Operators:
	a) Simulate the creation and manipulation of quantum states using
2	Dirac notation. Use GPT, Python, and MATLAB to perform
	calculations and visualize the quantum states.
	b) Simulate the measurement of quantum observables represented by

		Hermitian operators using GPT, Python, and MATLAB.
	c)	Develop matrix representations for quantum operators using
		Python and MATLAB. Apply these representations to solve a real
		physics problem related to a quantum system (one-dimensional
		quantum harmonic oscillator).
	d)	Simulate quantum measurements on various quantum states and
		calculate their corresponding expectation values using GPT,
		Python, and MATLAB.
	e)	Solve the time-independent Schrödinger equation for a quantum
		harmonic oscillator potential.
		Use Python or MATLAB to implement the creation and annihilation
		operators to find the energy eigenstates and corresponding
		eigenvalues for the harmonic oscillator potential.
	Advan	ced Quantum Algorithms and Simulations:
	a)	Implement Grover's Algorithm to solve a search problem using
		GPT, Python, and MATLAB. Understand the quantum search
		process and evaluate its efficiency compared to classical search
		algorithms.
	b)	Simulate Shor's Algorithm to factorize a given composite number
		into its prime factors using GPT, Python, and MATLAB.
3	c)	Simulate and analyze the Quantum Fourier Transform on a
5		quantum state. Use GPT, Python, and MATLAB to implement the
		QFT algorithm and explore its applications.
	d)	Simulate the electronic structure of a molecular system, such as H ₂ ,
		using quantum algorithms and analyze key properties. Use GPT,
		Python, and MATLAB.
	e)	Simulate and analyze quantum walks and quantum cellular
		automata using GPT, Python, and MATLAB. Explore the quantum
		algorithms and computational simulations related to these topics.
	Applic	cations in Computational Physics:
	a)	Simulate a basic Quantum Key Distribution protocol to understand
		the principles of secure communication using quantum principles.
		Implement the protocol using GPT, Python, and MATLAB.
	b)	Implement quantum algorithms to simulate the electronic
		structure of a material using GPT, Python, and MATLAB. Explore
4		the advantages of quantum computing in tackling materials science
-		problems.
	c)	Simulate the quantum entanglement of particles in a many-body
		astrophysical system using quantum computing concepts. Utilize
		GPT, Python, and MATLAB to implement quantum algorithms for
		the simulation.
	d)	Apply quantum computing techniques to simulate and analyze a
		scenario in high-energy physics. Use GPT, Python, and MATLAB to

		implement quantum algorithms and visualize the results.
	e)	Implement a quantum algorithm to simulate a simplified climate
		modeling problem. Use GPT for guidance, Python for quantum
		programming, and MATLAB for visualization.
	GPT-P	rompting to guide and enhance quantum simulations.
	a)	Use GPT to generate a problem statement and prompt for
		simulating the time evolution of a quantum spin system.
		Formulate the problem in natural language, including the system
		size, coupling strength, and initial conditions.
	b)	Implement a quantum simulation of the Heisenberg spin chain
		using Python and a suitable quantum simulation library (e.g., Qiskit
		or QuTiP).
		Use GPT-prompting to guide the choice of parameters (e.g., system
		size, time steps).
5	c)	Replicate the quantum simulation in MATLAB using appropriate
		functions and visualization tools.
		Compare the results obtained from Python and MATLAB
		implementations.
	d)	Analyze the time evolution of spin correlations and magnetization
		in the quantum spin system.
		Visualize the results using matplotlib in Python and built-in
		plotting functions in MATLAB.
	e)	Use GPT to generate prompts for analyzing specific aspects of the
		quantum simulation results (e.g., the impact of changing the
		coupling strength, observing quantum entanglement).

Course Title: N	IATERIAI	L SCIENCE	Course Type: Theory			
			Course Code: 23PPEH			
Total Hours: 90		Hours/Week: 6	Credits: 4			
Pass-Out Policy :						
Minimum Contact Hours: 54						
Total Score %: 10	0	Internal: 40	External: 60			
Minimum Pass %:	50 [No	o Minimum for Internal]				
Course Creator:		<u>Expert 1:</u>	Expert 1:			
Prof. A. Charles H Roy	lepzy	Dr. H. Adlin Mahiba	Dr. D. Hudson Oliver			
Asso. Prof., Facul	lty Head	Assi. Prof. of Physics	Assi. Prof. of Physics			
+919944261881		+919486578077	+919952654515			
achroy66@gmail.c	com	adlinemahiba1@gmail.cor	n hudson2612@gmail.com			

CLO - No.	Course Learning Outcome Upon completion of this course, students will be able to:		CLO & PLO MAPPED WITH GA	Cognitive Level CL	Knowled ge Catogory KC
CLO- 1	Acquire knowledge on optoelectronic materials	3[10] 4[10]	1,2,3, 5,6,7	R	С

CLO- 2	Be able to prepare ceramic materials	3[10] 4[10]	1,2,3, 5,6,7	Ар	F
CLO- 3	Be able to understand the processing and applications of polymeric materials	3[10] 4[10]	1,2,3, 5,6,7	U, Ap	F, P
CLO- 4	Be aware of the fabrication of composite materials	3[10] 4[10]	1,2,3, 5,6,7	E	Р
CLO- 5	Be knowledgeable of shape memory alloys, metallic glasses and nanomaterials	3[10] 4[10]	1,2,3, 5,6,7	R	М

Module	Course Description	Hours	% CLO Mapping with Module	Learning Activitie	Assessment Tasks	Reference	
Ι	OPTOELECTRONIC MATERIALS						
1.1	Importance of optical materials – properties:		1[10]	Lec	SA	1	
1.2	Band gap and lattice matching	1	1[10]	Lec	SA	1	
1.3	Optical absorption and emission	1	1[10]	GD	MCQ	1	
1.4	Charge injection, quasi-Fermi levels and recombination		1[10]	Lec	SA	1	
1.5	Optical absorption, loss and gain		1[10]	GD	Ess	1	
1.6	Optical processes in quantum structures	1	1[10]	Lec	Ess	1	
1.7	Inter-band and intra-band transitions	1	1[10]	Lec	Ess	1	
1.8	Organic semiconductors	1	1[10]	Lec	SA	1	
1.9	Light propagation in materials – Electro-optic effect and modulation	1	1[10]	GD	Qui	1	
1.10	Electro-absorption modulation – exciton quenching.	1	1[10]	Lec	Qui	1	
II	CERAMIC MATERIAI	S					
2.1	Ceramic processing	1	2[15]	Lec	Ess	5	
2.2	Powder processing	2	2[10]	Lec	Ess	5	
2.3	Milling and sintering	2	2[10]	Lec	SA	5	
2.4	Structural ceramics	1	2[10]	GD	MCQ	5	
2.5	Zirconia, almina	1	2[10]	GD	SA	5	
2.6	Silicon carbide, tungsten carbide	1	2[10]	GD	SA	5	

2.7	Electronic ceramics	1	2[10]	Lec	SA	5		
2.8	Refractories	1	2[10]	Lec	SA	5		
2.9	Glass and glass ceramics	1	2[15]	Lec	Ess	5		
III	POLYMERIC MATERIALS							
3.1	Polymers and copolymers	1	3[10]	Lec	Ess	5		
3.2	Molecular weight measurement	1	3[10]	Lec	Ess	5		
3.3	Synthesis: chain growth polymerization	1	3[10]	Lec	Ess	5		
3.4	Polymerization techniques	1	3[10]	GD	Ass	5		
3.5	Glass transition temperature and its measurement	1	3[10]	GD	SA	5		
3.6	Viscoelasticity	1	3[10]	GD	SA	5		
3.7	Polymer processing techniques	1	3[10]	Lec	Ass	5		
3.8	Applications: conducting polymers	1	3[10]	Lec	Ass	5		
3.9	Biopolymers	1	3[10]	Lec	Ess	5		
3.10	High temperature polymers	1	3[10]	Lec	Ass	5		
IV	COMPOSITE MATERIA	ALS						
4.1	Particle reinforced composites	1	4[15]	Lec	Sem	2,4		
4.2	Fiber reinforced composites	1	4[15]	Lec	Sem	2,4		
4.3	Mechanical behaviour	1	4[10]	GD	Sem	2,4		
4.4	Fabrication methods of polymer matrix composites	2	4[15]	Lec	Ass	2,4		
4.5	Fabrication methods of metal matrix composites	2	4[15]	Lec	Ass	2,4		
4.6	Carbon/carbon composites	1	4[10]	Lec	SA	2,4		
4.7	Fabrication	1	4[10]	Lec	Sem	2,4		
4.8	Applications	1	4[10]	GD	Sem	2,4		
V	NEW MATERIALS							

5.1	Shape memory alloys	1	5[10]	Lec	Sem	3
5.2	Mechanisms of one-way and two-way shape memory effect, reverse transformation	1	5[10]	Lec	Ess	3
5.3	Thermo-elasticity and pseudo-elasticity	1	5[10]	Lec	SA	3
5.4	Examples and applications	1	5[10]	GD	MCQ	3
5.5	Bulk metallic glass, criteria for glass formation and stability	2	5[10]	GD	Sem	3
5.6	Examples and mechanical behaviour	1	5[10]	Lec	Ass	3
5.7	Nanomaterials: classification	1	5[10]	Lec	Ass	3
5.8	Size effect on structural and functional properties	1	5[10]	GD	Sem	3
5.9	Processing and properties of Nano crystalline materials	1	5[10]	Lec	Sem	3
5.10	Single walled and multi walled carbon nanotubes	1	5[10]	Lec	Ass	3

BOOKS FOR REFERENCE:

- 1. Jasprit Singh, Electronic and optoelectronic properties of semiconductor structures, Cambridge University Press, 2007
- 2. P. K. Mallick. Fiber-Reinforced Composites. CRC Press, 2008.
- 3. V. Raghavan, 2003, Materials Science and Engineering, 4th Edition, Prentice- Hall India, New Delhi(For units 2,3,4 and 5),
- 4. G.K. Narula, K.S. Narula and V.K. Gupta, 1988, Materials Science, Tata McGraw-Hill
- 5. M. Arumugam, 2002, Materials Science, 3rd revised Edition, Anuratha Agencies.
- 6. <u>https://onlinecourses.nptel.ac.in/noc20_mm02/preview</u>
- 7. <u>https://nptel.ac.in/courses/112104229</u>
- 8. https://archive.nptel.ac.in/courses/113/105/113105081
- 9. https://nptel.ac.in/courses/113/105/113105025/
- 10. <u>https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemen</u> <u>tal_Modules_(Materials_Science)/Electronic_Properties/Lattice_Vibrations</u>

Course Title:	MEDICINA	L CHEMISTRY	Course Type: Theory				
Total Hours: 90]	Hours/Week: 6	Credits: 4				
Pass-Out Policy :							
Minimum Contact	Hours: 54						
Total Score %: 100	0	Internal: 40	External: 60				
Minimum Pass %:	50 [No M	inimum for Internal]					
Course Creator:		Expert 1:	Expert 2:				
Dr. Ragel Mabel S	Saroja	Dr. A. Jeena Pearl	Dr. A. Yardily				
Asso. Prpf., Facul	ty Head	Assi. Prof.	Assi. Prof.				
+919442303508		+919487352164	+91948711332				
ragelmabelsaroja@	Øyahoo.co.i	jeenapearl@rediffmail.c	o ayardily@gmail.co				
n		<u>m</u>	m				

CLO - No.	Course Learning Outcome Upon completion of this course, students will be able to:	PLO % MAPPED WITH CLO	CLO & PLO MAPPED WITH GA	Cognitive Level CL	Knowled ge Catogory KC
CLO- 1	Define drug and know drug discovery and design Know the QSAR, Hammett equation Craig	3[10] 4[10]	1,2,3, 5,6,7	R	С
CLO- 2	Illustrates the routes, distribution, metabolism and dosing of drug	3[10] 4[10]	1,2,3, 5,6,7	U	F
CLO- 3	Explain some of the medicinally important compounds, sulphonamides and the action of anesthetics	3[20] 4[10]	1,2,3, 5,6,7	Ар	Р
CLO- 4	Understand the classification, structure and synthesis of antineoplastic agents and antimalarial drugs	3[10] 4[10]	1,2,3, 5,6,7	An	Р
CLO- 5	Know the structure and synthesis of antibiotics and analgesic	3[10] 4[10]	1,2,3, 5,6,7	E	М

Module	Course Description	Hours	% CLO Mapping with Module	Learning Activitie	Assessment Tasks	Reference			
I	DRUG DISCOVERY AND DESIGN								
1.1	Drug – definition, requirements of an ideal drug.	1	1[10]	Lec	Qui	1			
1.2	Drug discovery of Penicillin	1	1[10]	Lec	Mcq	2			
1.3	Discovery of lead compounds, Natural sources, Analogues and prodrugs	2	1[20]	Lec	Sem	1			
1.4	Concepts of lead molecules with example Factors governing drug design.	2	1[10]	TPS	Ass	2			
1.5	The method of variation - drug design through disjunction, conjunction	1	1[10]	BS	Ass	3			

1.6	Hammett equation, Taft equation	2	1[10]	Lec	Quiz	2		
1.7	Hansch equation, QSAR, Craig plot	2	1[20]	TPS	Ass	2		
1.8	Computer – Assisted design.	1	1[10]	GD	Ass	3		
II	PHARMACOKINETICS							
2.1	Pharmacokinetics (ADME) – Introduction	1	2[10]	Lec	Qui	4		
2.2	Routes of administration of drugs	2	2[10]	Lec	Qui	4		
2.3	Oral administration of drugs	1	2[10]	BS	Sem	4		
2.4	Administration of drugs through injection	1	2[10]	TPS	Ass	4		
2.5	Drug absorption – oral routes.	1	2[10]	Lec	Mcq	1		
2.6	Drug distribution to tissues, cells, blood – brain barrier, placental barrier	2	2[20]	Lec	Qui	1		
2.7	Drug Metabolism –Phase I transformation, Phase II transformation.	2	2[10]	TPS	Ass	2		
2.8	Drug excretion through lungs, bile duct and	1	2[10]	Lec	Sem	2		
2.9	Drug dosing – drug half – life, steady state concentration and drug tolerance	1	2[10]	BS	Ass	2		
III	ANTIMALARIAL ,ANAESTHETIC AND SULPHA DRUGS							
3.1	Antimalarial drugs-introduction and classification	2	3[20]	Lec	Qui	3		
3.1	Antimalarial drugs-introduction and classification Structure and synthesis of chloroquine,	2 3	3[20] 3[20]	Lec Lec	Qui Sem	3 3		
3.1 3.2	Antimalarial drugs-introduction and classification Structure and synthesis of chloroquine, primaquine. proguanil. pyrimethamine, camoquine, novacaine, methylisoquine and	23	3[20] 3[20]	Lec Lec	Qui Sem	3		
3.1 3.2 3.3	Antimalarial drugs-introduction and classification Structure and synthesis of chloroquine, primaquine. proguanil. pyrimethamine, camoquine, novacaine, methylisoquine and Structure and uses of Narcotic drugs -Morphine, Non-Narcotic drugs -Ibuprofen	2 3 2	3[20] 3[20] 3[20]	Lec Lec BS	Qui Sem Ass	3 3 3		
3.1 3.2 3.3 3.4	Antimalarial drugs-introduction and classification Structure and synthesis of chloroquine, primaquine. proguanil. pyrimethamine, camoquine, novacaine, methylisoquine and Structure and uses of Narcotic drugs -Morphine, Non-Narcotic drugs -Ibuprofen Preparation and uses of local Anaesthetic s- chloroform, cocaine	2 3 2 2	3[20] 3[20] 3[20] 3[20]	Lec Lec BS Lec	Qui Sem Ass Mcq	3 3 3 3		
3.1 3.2 3.3 3.4 3.5	Antimalarial drugs-introduction and classification Structure and synthesis of chloroquine, primaquine. proguanil. pyrimethamine, camoquine, novacaine, methylisoquine and Structure and uses of Narcotic drugs -Morphine, Non-Narcotic drugs -Ibuprofen Preparation and uses of local Anaesthetic s- chloroform, cocaine Chemistry of sulphonamides – sulfothiazole Sulphadiazine, Prontosil – Preparation and uses	2 3 2 2 3	3[20] 3[20] 3[20] 3[20] 3[20]	Lec Lec BS Lec Lec	Qui Sem Ass Mcq Sem	3 3 3 3 3		
3.1 3.2 3.3 3.4 3.5 IV	Antimalarial drugs-introduction and classification Structure and synthesis of chloroquine, primaquine. proguanil. pyrimethamine, camoquine, novacaine, methylisoquine and Structure and uses of Narcotic drugs -Morphine, Non-Narcotic drugs -Ibuprofen Preparation and uses of local Anaesthetic s- chloroform, cocaine Chemistry of sulphonamides – sulfothiazole Sulphadiazine, Prontosil – Preparation and uses CHEMOTHERAPEUTIC AGI	2 3 2 2 3 ENT	3[20] 3[20] 3[20] 3[20] 3[20]	Lec Lec BS Lec Lec	Qui Sem Ass Mcq Sem	3 3 3 3 3		
 3.1 3.2 3.3 3.4 3.5 IV 4.1 	Antimalarial drugs-introduction and classification Structure and synthesis of chloroquine, primaquine. proguanil. pyrimethamine, camoquine, novacaine, methylisoquine and Structure and uses of Narcotic drugs -Morphine, Non-Narcotic drugs -Ibuprofen Preparation and uses of local Anaesthetic s- chloroform, cocaine Chemistry of sulphonamides – sulfothiazole Sulphadiazine, Prontosil – Preparation and uses CHEMOTHERAPEUTIC AGI Antineoplastic agents Introduction	2 3 2 2 3 5 ENT 2	3[20] 3[20] 3[20] 3[20] 3[20] 4[10]	Lec Lec BS Lec Lec	Qui Sem Ass Mcq Sem Qui	3 3 3 3 3 4		
 3.1 3.2 3.3 3.4 3.5 IV 4.1 4.2 	Antimalarial drugs-introduction and classification Structure and synthesis of chloroquine, primaquine. proguanil. pyrimethamine, camoquine, novacaine, methylisoquine and Structure and uses of Narcotic drugs -Morphine, Non-Narcotic drugs -Ibuprofen Preparation and uses of local Anaesthetic s- chloroform, cocaine Chemistry of sulphonamides – sulfothiazole Sulphadiazine, Prontosil – Preparation and uses CHEMOTHERAPEUTIC AGI Antineoplastic agents Introduction Classification	2 3 2 2 3 ENT 2 2 2	3[20] 3[20] 3[20] 3[20] 3[20] 4[10] 4[20]	Lec Lec BS Lec Lec Lec Lec	Qui Sem Ass Mcq Sem Qui Sem	3 3 3 3 3 4 4		
 3.1 3.2 3.3 3.4 3.5 IV 4.1 4.2 4.3 	Antimalarial drugs-introduction and classification Structure and synthesis of chloroquine, primaquine. proguanil. pyrimethamine, camoquine, novacaine, methylisoquine and 	2 3 2 2 3 ENT 2 2 3	3[20] 3[20] 3[20] 3[20] 3[20] 3[20] 4[10] 4[20] 4[20]	Lec Lec BS Lec Lec Lec Lec	Qui Sem Ass Mcq Sem Qui Sem Sem	3 3 3 3 3 4 4 4 4		
 3.1 3.2 3.3 3.4 3.5 IV 4.1 4.2 4.3 4.4 	Antimalarial drugs-introduction and classification Structure and synthesis of chloroquine, primaquine. proguanil. pyrimethamine, camoquine, novacaine, methylisoquine and Structure and uses of Narcotic drugs -Morphine, Non-Narcotic drugs -Ibuprofen Preparation and uses of local Anaesthetic s- chloroform, cocaine Chemistry of sulphonamides – sulfothiazole Sulphadiazine, Prontosil – Preparation and uses CHEMOTHERAPEUTIC AGI Antineoplastic agents Introduction Classification Structure and synthesis of cyclophosphamide, Ifosfamide, Chlorambucil, Busulfan Structure and synthesis of Decarbazine, Fluorouracil, Cisplatin and Carboplatin	2 3 2 2 3 5 ENT 2 2 3 2 2	3[20] 3[20] 3[20] 3[20] 3[20] 3[20] 4[10] 4[20] 4[20] 4[20]	Lec Lec BS Lec Lec Lec Lec TPS	Qui Sem Ass Mcq Sem Qui Sem Sem Mcq	3 3 3 3 3 4 4 4 4 4		

v	ANALGESICS, ANTIBIOTICS AND ANTI DIABETIC DRUGS							
5.1	Antidiabetic Agents :Introduction, Types of diabetics, Drugs used for the treatment, chemical	2	5[20]	Lec	Sem	4		
5.2	Mechanism of action, Treatment of diabetic mellitus, Chemistry of insulin	2	5[20]	Lec	Qui	4		
5.3	Antibiotics –Introduction Synthesis of Penicillin, Cephalosporin, Streptomycin,Terramycin ,	3	3[20]	Lec	Sem	4		
5.4	Analgesics-Introduction, Classification	2	5[20]	BS	Qui	4		
5.5	Structure of Aspirin, Salol, Antifebrin, Phenacetin, Novalgin, Cinchophen	3	5[20]	Lec	Sem	4		

BOOKS FOR REFERENCE:

- 1. Graham L. Patrick, Introduction to Medicinal Chemistry, Oxford University press 1995.
- 2. Graham L. Patrick, Instant notes on Medicinal Chemistry, Series Edn. B. P. Hawes Viva book, (P) Ltd. 2002
- 3. G, C.D. Krupadanam, D. Vijaya Prasad, K.V. Rao, K.L.N. Reddy and C. Sudhakar, Drug, university presses India Ltd. 2001.
- 4. Asuthosh Kaur, Medicinal chemistry. New Age International publishers, 2009
- 5. V.K. Ahluwalia, Madhu Chopra, Ane's student's 2nd Edition. Medicinal chemistry 2012.
- 6. R.S. Satoskar and S.P. Bhandarkar, Pharmacology and Pharamatherapeutics, Wiley Eastern Ltd., 1995.
- 7. Gurdeep and Chatwal Goel, Synthesis Drugs Publishing Company, 1996.
- 8. G.R. Chatwal, A Text Book of Pharmaceutical Chemistry, Himalaya publishing House, 1986.
- 9. P.Parimoo, A Text book of Medical Chemistry, Newdelhi, CBS Publishers, 1995
- 10. Foye's Princles of Medicinal Chemistry, Lipincott Williams, Seventh Edition, 2012